Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "engineering modelling" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Modelling of vane and rotor blade rows in simulations of gas turbine performance
Autorzy:
Sznajder, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/244955.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
aircraft engines
mechanical engineering
engine parts
simulation
modelling
Opis:
A method of modelling of nozzle and rotor blade rows of gas turbine dedicated to simulations of gas turbine performance is proposed. The method is applicable especially in early design stage when many of geometric parameters are yet subject to change. The method is based on analytical formulas derived from considerations of flow theory and from cascade experiments. It involves determination of parameters of gas flow on the mean radius of blade rows. The blade row gas exit angle, determined in turbine design point is a basis for determination of details of blade contour behind the throat position. Throat area is then fixed based on required maximum mass flow in critical conditions. Blade leading edge radius is determined based on flow inlet angle to the blade row in the design point. The accuracy of analytical formulas applied for definition of blade contour details for assumed gas exit angle was verified by comparing the results of analytical formulas with CFD simulations for an airfoil cascade. Losses of enthalpy due to non-isentropic gas flow are evaluated using the analytical model of Craig and Cox, based on cascade experiments. Effects of blade cooling flows on losses of total pressure of the gas are determined based on analytical formulas applicable to film cooling with cooling streams blowing from discrete point along blade surface, including leading and trailing edges. The losses of total pressure due to film cooling of blades are incorporated into the Craig and Cox model as additional factor modifying gas flow velocities.
Źródło:
Journal of KONES; 2019, 26, 1; 183-190
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulations of hot-gas flow in internally cooled cascade of turbine vanes
Autorzy:
Sznajder, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/242679.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
aircraft engines
mechanical engineering
engine parts
simulation and modelling
Opis:
An experiment in cooling of gas turbine nozzle guide vanes was modelled numerically with a conjugate viscousflow and solid-material heat conduction solver. The nozzle vanes were arranged in a cascade and operated in highpressure, hot-temperature conditions, typical for first turbine stage in a flow of controlled-intensity, artificiallygenerated turbulence. The vane cooling was internal, accomplished by 10 channels in each vane with cooling-air flow. Numerical simulations of the experiment were conducted applying two turbulence models of the k-omega family: k-omega-SST and Transition SST implemented in the ANSYS Fluent solver. Boundary conditions for the simulations were set based on conditions of experiment: total pressures and total temperature on inlet to cascade, static pressure on the outlet of the cascade and heat flux on the surface of cooling channels. The values of heat flux on the surface of cooling channels were evaluated based on Nusselt numbers obtained from experiment and varied in time until steadystate conditions were obtained. Two test cases, one with subcritical outlet flow, and another one, with supercritical outlet flow were simulated. The result of experiment – distributions of pressure, surface temperature, and heat transfer coefficients on the vane external surface were compared to results of numerical simulations. Sensitivity of the vane surface temperatures and heat transfer coefficients to turbulence models and to boundary-condition values of parameters of turbulence models: turbulence energy and specific dissipation of turbulence energy was also studied.
Źródło:
Journal of KONES; 2019, 26, 2; 151-158
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies