Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "high-frequency" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Modele hierarchiczne w prognozowaniu zmiennych o wysokiej częstotliwości obserwowania w warunkach braku pełnej informacji
Hierarchical models in forecasting of the high-frequency variables in the conditions of lack of full information
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/425235.pdf
Data publikacji:
2014
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
high-frequency data
hierarchical models
incomplete time series
Opis:
The paper presents a procedure of application of regular hierarchical models in forecasting missing data in high-frequency time series with cyclical fluctuations. Annual, weekly and daily cycles of seasonal fluctuation have additive character. Separately regular hierarchical models have been built for even length cycles.Theoretical considerations are illustrated with an empirical example.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2014, 4(46); 72-84
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie brakujących danych dla szeregów o wysokiej częstotliwości oczyszczonych z sezonowości
Forecasting missing data for seasonal adjusted high frequency time series
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/585670.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Dane o wysokiej częstotliwości
Luki w danych
Prognozowanie
Wyrównywanie wykładnicze
Złożona sezonowość
Complex seasonality
Exponential smoothing
Forecasting
High frequency time series
Unsystematic gaps
Opis:
W pracy przedstawione zostało wykorzystanie wybranych modeli adaptacyjnych w prognozowania zmiennych o bardzo wysokiej częstotliwości obserwowania, na podstawie szeregów z lukami niesystematycznymi, z których wyeliminowano dwa lub trzy rodzaje sezonowości. Egzemplifikacją rozważań teoretycznych stanowi przykład empiryczny, dotyczący kształtowania się zapotrzebowania na moc energetyczną w okresach godzinnych w aglomeracji A.
In this paper was presented application of selected exponential smoothing models in forecasting very high frequency variables on the basis of time series with unsystematic gaps, from which two or three types of seasonal fluctuations were eliminated. Exemplification of theoretical considerations will be an empirical example, concerning the power demand in agglomeration A in hourly periods.
Źródło:
Studia Ekonomiczne; 2016, 289; 205-217
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
WYKORZYSTANIE DANYCH OCZYSZCZONYCH O WYSOKIEJ CZĘSTOTLIWOŚCI W PROGNOZOWANIU ZMIENNYCH ZE ZŁOŻONĄ SEZONOWOŚCIĄ
APPLICATION OF SEASONALLY ADJUSTED HIGH FREQUENCY DATA TO FORECASTING VARIABLES WITH COMPLEX SEASONALITY
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/452810.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
prognozowanie
dane o wysokiej częstotliwości
złożona sezonowość
wyrównywanie wykładnicze
forecasting
high frequency data
complex seasonality
exponential smoothing models
Opis:
W pracy przedstawione zostanie procedura modelowania i prognozowania zmiennej o bardzo wysokiej częstotliwości obserwowania na podstawie szeregów, z których wyeliminowano dwa lub trzy rodzaje sezonowości. Do budowy prognoz zostaną wykorzystane wybrane modele adaptacyjne. Rozważania teoretyczne zilustrowane zostaną przykładem empirycznym dotyczącym, kształtowania się zapotrzebowania na moc energetyczną w okresach godzinnych w aglomeracji A.
In the article will be presented procedure to modeling and forecasting of the high frequency variable, based on series, from which was eliminated two or three types of seasonality. Forecasts will be built on the basis of exponential smoothing models. The theoretical considerations will be illustrated with empirical example about demand for electricity in hour periods in the agglomeration A.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2015, 16, 4; 147-159
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie modeli wyrównywania wykładniczego w prognozowaniu zmiennych o wysokiej częstotliwości w warunkach braku pełnej informacji
Application of exponential smoothing models in forecasting high frequency time series in the condition of lack of full information
Autorzy:
Szmuksta-Zawadzka, Maria
Zawadzki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/425251.pdf
Data publikacji:
2015
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
forecasting
high frequency time series
complex seasonality
exponential smoothing models
systematic gaps in the data
Opis:
The paper will present the results of the application of the modified additive and multiplicative exponential smoothing models (Brown, Holt and Holt-Winters) in the interpolation and extrapolation forecasting of demand for power energy in the agglomeration A in hour periods, based on time series with systematic gaps. The basis for the construction of forecasts will be time series, from which twelve month, weekly and twenty-four hour fluctuation cycles have been eliminated. Additionally the comparative analysis of accuracy of forecasts built for classical time series models with complex seasonal fluctuations will be conducted. There also will be presented an assess of the criteria for selecting the optimal values of the smoothing constants in terms of building an ex ante forecasts.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2015, 4 (50); 228-239
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies