Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Condition analysis" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Time-frequency Representation -enhanced Transfer Learning for Tool Condition Monitoring during milling of Inconel 718
Autorzy:
Zhou, Yuqing
Sun, Wei
Ye, Canyang
Peng, Bihui
Fang, Xu
Lin, Canyu
Wang, Gonghai
Kumar, Anil
Sun, Weifang
Powiązania:
https://bibliotekanauki.pl/articles/24200823.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool condition monitoring
time-frequency analysis
Markov Transition Field
transfer learning
Opis:
Accurate tool condition monitoring (TCM) is important for the development and upgrading of the manufacturing industry. Recently, machine-learning (ML) models have been widely used in the field of TCM with many favorable results. Nevertheless, in the actual industrial scenario, only a few samples are available for model training due to the cost of experiments, which significantly affects the performance of ML models. A time-series dimension expansion and transfer learning (TL) method is developed to boost the performance of TCM for small samples. First, a time-frequency Markov transition field (TFMTF) is proposed to encode the cutting force signal in the cutting process to two-dimensional images. Then, a modified TL network is established to learn and classify tool conditions under small samples. The performance of the proposed TFMTF-TL method is demonstrated by the benchmark PHM 2010 TCM dataset. The results show the proposed method effectively obtains superior classification accuracies for small samples and outperforms other four benchmark methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165926
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tool wear condition monitoring in milling process based on data fusion enhanced long short-term memory network under different cutting conditions
Autorzy:
Zheng, Guoxiao
Sun, Weifang
Zhang, Hao
Zhou, Yuqing
Gao, Chen
Powiązania:
https://bibliotekanauki.pl/articles/2038054.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool wear condition monitoring
empirical mode decomposition
variational mode decomposition
fourier synchro squeezed transform
neighborhood component analysis
long short-term memory network
Opis:
Tool wear condition monitoring (TCM) is essential for milling process to ensure the machining quality, and the long short-term memory network (LSTM) is a good choice for predicting tool wear value. However, the robustness of LSTM- based method is poor when cutting condition changes. A novel method based on data fusion enhanced LSTM is proposed to estimate tool wear value under different cutting conditions. Firstly, vibration time series signal collected from milling process are transformed to feature space through empirical mode decomposition, variational mode decomposition and fourier synchro squeezed transform. And then few feature series are selected by neighborhood component analysis to reduce dimension of the signal features. Finally, these selected feature series are input to train the bidirectional LSTM network and estimate tool wear value. Applications of the proposed method to milling TCM experiments demonstrate it outperforms significantly SVR- based and RNN- based methods under different cutting conditions.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 612-618
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies