Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Purwani, Sri" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Multiple Linear Regression Using Cholesky Decomposition
Autorzy:
Sumiati, Ira
Handoyo, Fiyan
Purwani, Sri
Powiązania:
https://bibliotekanauki.pl/articles/1031897.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Cholesky decomposition
Multiple linear regression
covariance matrix
Opis:
Various real-world problem areas, such as engineering, physics, chemistry, biology, economics, social, and other problems can be modeled with mathematics to be more easily studied and done calculations. One mathematical model that is very well known and is often used to solve various problem areas in the real world is multiple linear regression. One of the stages of working on multiple linear regression models is the preparation of normal equations which is a system of linear equations using the least-squares method. If more independent variables are used, the more linear equations are obtained. So that other mathematical tools that can be used to simplify and help to solve the system of linear equations are matrices. Based on the properties and operations of the matrix, the linear equation system produces a symmetric covariance matrix. If the covariance matrix is also positive definite, then the Cholesky decomposition method can be used to solve the system of linear equations obtained through the least-squares method in multiple linear regression. Based on the background of the problem outlined, such that this paper aims to construct a multiple linear regression model using Cholesky decomposition. Then, the application is used in the numerical simulation and real case.
Źródło:
World Scientific News; 2020, 140; 12-25
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial-Temporal Analysis of Rainfall West Java Indonesia Using Empirical Orthogonal Function based on Singular Value Decomposition
Autorzy:
Pribadi, Diantiny Mariam
Sumiati, Ira
Purwani, Sri
Powiązania:
https://bibliotekanauki.pl/articles/1031922.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Empirical Orthogonal Function
Rainfall
Singular Value Decomposition
Spatial-Temporal
Opis:
Rainfall is one of the climate variables that have a significant influence, especially in supporting the activities of various sectors in tropical countries. Climate change is causing rainfall variability in Indonesia. However, the analysis of climate variable patterns is difficult because of the formation of a large matrix. Empirical Orthogonal Function (EOF) analysis can be used to reduce the dimensions of large data by maintaining as much variation as possible from the original data set. The method used in this study is through the Singular Value Decomposition (SVD) approach. The analysis shows that 98.50% of the total rainfall variance can be represented by four EOF modes. Analysis of the spatial pattern of EOF1 shows that rainfall is below average, while the other EOF modes show variations in rainfall.
Źródło:
World Scientific News; 2020, 140; 113-126
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies