Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "temperatury" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Wpływ zmian temperatury wody na Prądzie Norweskim na kształtowanie rocznej temperatury powietrza w atlantyckiej Arktyce i notowane tam ocieplenie w okresie ostatniego 20-lecia
The influence of changes in water temperature in the Norwegian Current on annual air temperature in the Atlantic part of the Arctic and its warming noted over the past 20-year period
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260694.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
temperatury wody
Arktyka
water temperature
air temperature
Arctic
Opis:
Kruszewski, Marsz and Zblewski (2003) found out that winter temperature of water in the Norwegian Current indicates quite strong, occurring with a delay, correlations with the air temperature at Spitsbergen, Bjornoya, Hopen and Jan Mayen. Strong and statistically significant correlations between the mean sea surface temperature (SST) in the period January-March in grid 2°x2° [67°N, 10°E] and the monthly temperature of July, August and September with SST are marked the same year (3-5 month delay) and with the air temperature in November and December the following year (18-20 month delay). Waters of the Norwegian Current transport warm, of higher salinity Atlantic waters. Winter SST of the Atlantic Ocean characterizes the heat resources in the deeper layers of waters. SST in grid [67,10] in an indirect way characterizes heat resources carried with the Atlantic waters into the Norwegian Sea and farther to the Arctic together with the West Spitsbergen and Nordcap currents. The aim of this work is to describe the influence caused by changes in heat resources transported to the Arctic with the Norwegian Current on the annual temperature of air in the region of Hopen, Spitsbergen and Jan Mayen. The examined period covers the years of 1982?2002 and is marked by great warming in this area. The analysis of spatial distribution of correlation coefficients justifies Kruszewski and others (2003) hypothesis of mechanism causing the delayed influence of changes in water heat resources on the air temperature in this region The observed positive correlations between winter SST in [67,10] grid and air temperature in July, August and September result in the influence of changing water heat resources on atmospheric circulation noted in these months. Positive correlations in November and December in the following year result from the ?onflow? to the Arctic of warmer and of high salinity Atlantic waters. They have influence on the ice formation on the Greenland and Barents seas thus causing that influence of changing heat resources carried with waters on air temperature is much stronger. The analysis of regression made it possible to establish the correlation between annual air temperature at a given station (Ts) and winter water temperature (Tw) in [67,10] grid. Annual temperature in a year k is a function of two variables: Tw of the same year as the temperature Ts (Tw(k)) and Tw from the preceding year (Tw(k-1)): Ts(k) = A + b . Tw(k) + c . Tw(k-1) Table 3 contains the values of constant term and regression coefficients as well as statistical characteristics of formulas for the analysed stations. Both variables Tw from the year k and the year k-1 explain about 40% of the changeability in mean annual air temperature of the observed 20-year period at the analysed stations. This means that only one element, i.e. heat resource in the waters of the Norwegian Current, defined with the value Tw, determines more than 1/3 of the whole annual changeability in air temperature in the region located from Jan Mayen up to Hopen and from Tromso up to Ny Alesund. The station for which maximum explanation may be applied (47.7%) is Hopen, the station where the positive trend in annual temperature is the highest (+0.090°C/year). The values of regression coefficients b and c prove that the inertial factor connected with advection of the Atlantic waters has greater role in the changeability in mean annual temperature of air. The analysis of formula [2] indicates that great increases and decreases in annual temperature at the discussed stations will be observed in a k year if the values of Tw in two following years are significantly higher or lower than the mean ones. That is why the occurrence of positive trend in value of Tw should be followed by relatively systematic increase in annual air temperature at stations located at the described region. A positive trend in annual air temperature was noted at the analysed stations over the period 1982?2002. At Jan Mayen its value is +0.067 (ą0.028)°C/year (p<0.026). When taking the estimated values of regression coefficients in the multiple regression connecting the annual temperature at Jan Mayen with the value of Tw (Table 1) and the same value of trend T equal to +0.023 then the value of annual trend in air temperature at Jan Mayen influenced by trend Tw equals 0.0598°C/year. The obtained result indicates that the whole or almost whole warming observed at Jan Mayen in the years 1983-2002 may be explained by direct and indirect influence of the increase in the value of Tw over that period.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 69-78
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg wartości wskaźnika oceanizmu na Szetlandach Południowych według zweryfikowanych danych połączonego ciągu Deception-Bellingshausen (1944-2000)
The course of oceanicity index in the South Shetlands on the basis of verified data of the 'syntetic' Deception-Bellingshausen series (1947-2000)
Autorzy:
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260891.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Szetlandy Południowe
temperatury powietrza
South Shetland Islands
air temperature
Opis:
This article presents the characteristic of the course of oceanicity index (Oc) in the region of the South Shetlands and its correlation with ENSO. The research made use of reconstructed by Lagun and Marshall (2001) series of monthly air temperatures at Bellingshausen station (1947-2000). The values of Oc have been calculated both for a calendar and hydrologic years (May - April) with a formulae given by Marsz (1995). Series of Southern Oscillation indexes (SOI) obtained from CRU has been used to examine correlation between Oc and ENSO. Periods of smaller and greater changes in Oc index were observed to take place one following another in the said period (Fig. 1) and a good proportion of the years was marked by ultraoceanicity. A posotive trend appearing in the series turned to be not statistically significant (Fig. 3). The analysis showed 2-year and 6-year periodiciy in the series of Oc index. Correlation between oceanicity index and mean annual air temperature (Fig. 2) and minimum temperature is characterised by high statistical significance. The fact that most significant correlation occurs in winter may prove that changes in ice condition have great influence on the increase in the frequency of occurrence of fresh sea air masses. The obtained results point to a tendency that the increase in air temperature in the region of the South Shetlands and the northern coast of the Antarctic Peninsula is followed by the increase in the transport of heat from the ocean to the atmosphere, represented by the increase in oceanicity index. At this stage we obtain quite paradoxical picture, i.e. the increase in the transfer of heat from the surface of the ocean should be accompanied by great rise in air temperature in winter, that is in the period when the intensity of heat transfer from the ocean to the atmosphere reaches greatest values. However, the analysis of trends indicated that the greatest rise in temperature was observed in the warmest month and in summer temperatures, that is in the periods when the heat transfer from the ocean to the atmosphere was least intensive. This means, that a possible cause ? effect sequence relating the increase in air temperature to the intensity of ocean influence observed in this area must be more comlicated than it is usually observed. Quite clear correlations may by noted here, although occurring with a long, 2-year time shift between the Oc and SOI. Such a great time shift suggests that the correlation between those variables cannot by governed by direct atmospheric circulation but there must be an in direct inertion linking element that retards the effect of temperature increase. The only possible link of this type ocean. The mechanisms that cause the shift of the maximum increase in the transfer of heat from the ocean to the air in winter to the increase in air temperature in summer are not clear. The co-author research results obtained so far seem to indicate that the mechanism responsible for the shift may be attributed to large scale changes in sea surface temperature reflected in changes in sea ice cover extent and its concentration.
Źródło:
Problemy Klimatologii Polarnej; 2002, 12; 21-32
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O "arktycznych" i "atlantyckich" mechanizmach sterujących zmiennością temperatury powietrza na obszarze Europy i północo-zachodniej Azji
On "Arctic" and "Atlantic" mechanisms controlling the changeability in air temperature in the region of Europe and NW Asia
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260919.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
zmiany temperatury powietrza
zmiany temperatury wody powierzchniowej
NAO
Oscylacja Eurazjatycka
AO
Arktyka Atlantycka
NW Azja
Europa
Atlantyk Północny
NW Asia
Europe
changes in pressure
changes in air temperature
Opis:
Praca omawia wpływ zmian ciśnienia atmosferycznego w Arktyce Atlantyckiej (dalej AA) na kształtowanie zmienności temperatury powietrza na obszarze Europy (na N od 40°N) i NW Azji (do 120°E). Wpływ zmian ciśnienia w AA na temperaturę powietrza zaznacza się we wszystkich, z wyjątkiem czerwca, miesiącach roku, tworząc charakterystyczny cykl z maksimum siły oddziaływania zimą. Zimowe (01-03) zmiany ciśnienia w AA objaśniają od kilkunastu do ponad 60% zmienności temperatury rocznej (z maksimum na obszarze wokół-bałtyckim; 1951-2000). W pracy analizuje się współdziałanie zmian ciśnienia w Arktyce Atlantyckiej ze zmianami ciśnienia w Wyżu Syberyjskim w kształtowaniu zmienności temperatury powietrza na obszarze Europy i NW Azji. Dyskutuje się również kwestie związków zmian ciśnienia w AA z NAO, AO oraz frekwencją makrotypów cyrkulacji środkowotroposferycznej wg klasyfikacji Wangengejma-Girsa. Wyniki analiz wykazują, że o zimowych zmianach ciśnienia w AA decyduje wcześniejszy rozkład zasobów ciepła w wodach Atlantyku Północnego.
The research on relations between climatic elements of Europe and the Arctic has indicated that there are significant correlations between changes in atmospheric pressure in the Atlantic part of the Arctic and air temperature in northern Europe and NW Asia. The strongest correlations are observed between changes in pressure over relatively small area of the Atlantic part of the Arctic (72.5 - 80.0°N, 10.0 - 25.0°E), in addition, the point over which changes in pressure explain most of changes in air temperature is located 75.0°N, 015.0°E. Pressure at this point is further referred as P[75,15] with an index denoting a month (e.g. P[75,15]03 denotes mean pressure in March and P[75,15]01-03 defines mean pressure at this point from the period January till March). Over the Atlantic part of the Arctic within the pressure area there is no marked climatic centre which could be regarded as the centre of atmospheric activity. The research made use of monthly series of SLP values (reanalysis: set NOAA.NCEP-NCAR. CDAS-1.MONTHLY.Intrinsic.MSL.pressure) and the values of monthly air temperature from 211 stations (Fig. 1). The observational period common for both elements covers 50 years, i.e. the period from January 1951 to December 2000. The character of correlations between P[75,15] and air temperature in the following months, from June to May, and their spatial distribution have been presented by isocorrelates maps (Fig. 2). Changes in the strength of correlations between P[75,15] and the temperature over Europe and NW Asia form a clear annual cycle interrupted in June. In June the correlations between P[75,15] and air temperature became very weak and not significant over the most of the area and not continuous in space. During the months after June these correlations got stronger and stronger reaching their maximum during cold season (from November to April). This maximum is located in the region adjacent to the Baltic Sea, where annual and winter (01-03) changes in P[75,15] explain from more than 60% to 50% of annual temperature variances (Fig. 3) The strongest correlation between P[75,15] and air temperature in Siberia is located N of Baikal, where winter (01-03) changes in P[75,15] explain 43-45% of annual temperature variances. At the end of the cold season a visible delay of the decrease in the strength of correlation is observed in the region of Siberia in relation to the European region (in Europe after March, in Siberia after April). Variability in winter and annual values of pressure at 75°N, 015°E also indicates relatively strong correlations with the changeability in temperature of the warmest month in the year in the west and central region of Europe. The annual variability in P[75,15] explains from 40% to 30% changeability of maximum temperature in the region extending from the Atlantic coast of France to central Germany. This belt extends farther east towards the Baltic Sea. The latter correlation has not been explained in this work. The analysis of correlations of changes in pressure at 75°N, 15°E with NAO indicates to the occurrence of statistically significant correlations during months of cold season in the year (October - March, May and June; Tab. 2). Similar analysis of correlations of changes in P[75,15] with AO index (Arctic Oscillation) shows strong and highly statistically significant correlations in all months of the year with maximum falling in January and February. Annual changes in P[75,15], i.e. in pressure at one point explain 73% annual changeability in AO index (r = 0.86) and the winter changeability in (December - March) P[75,15] explains 78% of winter changeability in AO index (r = 0.88) which is the first vector EOF of pressure field (1000 hPa) covering the area from 20°N to the North Pole (90°N), that is the most area of the Northern Hemisphere. This analysis shows that the changes in pressure at the point 75°N, 15°E result in intensification of cyclogenesis over west and central part of the North Atlantic and the consequent long waves (waves of W type following Wangengejm-Girs classification) cause that anticyclones formed over the Atlantic will direct towards Fram Strait through the region of Iceland. The above process has nothing or almost nothing to do with the form of changeability in polar strato-spheric eddy, as assumed by Tomphson and Wallace (1998, 2000, Thompson, Wallace, Hegerl 2000) to be essential for the Arctic Oscillation functioning. Occurrence of correlations between P[75,15] and air temperature over vast areas from 10°W to 130°E suggests that also changes in pressure in the Siberian High are engaged in this process. Theanalysis shows that in a yearly process, changes in pressure in the Atlantic part of the Arctic and in the Siberian High occur in opposite phases (see Tab.1). Barometric gradient between the Atlantic part of the Arctic and the Siberian High becomes extremely strong during the cold season of the year contributing to "pumping" air from eastern Europe to the far end of the Siberia. During the summer season the gradient becomes very weak as the about-turn takes place. The cooperation of changes in pressure in the Atlantic part of the Arctic and pressure in region located farther Baikal -- Mongolia results in very strong oscillation which partly can be identified with Euro-Asian Oscillation (Monahan et al. 2000). During winter season interannual changes in pressure in the Siberian High are relatively small and explain 10.4% variances of barometric gradient between P[75,15] and point 45°N, 110°E (the region of the centre of the Siberian High), whereas the interannual changes in P[75,15] explain 77.5% of variances in this gradient. This means that in the cold season of the year the intensity of air transfer from the west towards Asian land depends on variability in pressure in the Atlantic part of the Arctic. Because in the months of the cold season of the year NAO is the strongest and significantly correlated with changes in P[75,15] therefore, a two-element, with the same phase "conveyor belt" is formed, which during positive phases of NAO transfers the air from over the Atlantic to Europe (NAO) and then towards and into the Siberia (Euro-Asian Oscillation). P[75,15] during cold season months of the year (01-03) indicates statistically significant negative trend (-0.153 hPa/year; p < 0.006) which enables to state that the observed, over the years 1951-2000, increase in air temperature in the Siberia can be, in great extent, attributed to the activity of the above described circulation mechanism. The analysis of reasons for interannual changes in P[75,15] has indicated that there are strong and significant correlations between variability in P[75,15] and the earlier variability in the thermal conditions of the Atlantic Ocean. A very important role in this relation plays thermal condition of three sea areas, i.e. waters of the subtropical region of central part of the North Atlantic (characterized by SST anomalies in grid 34°N, 40°W from August and September), waters of the middle latitudes zone of the central part of the North Atlantic (characterized by SST anomalies from August and September in grid 54°N, 30°W) and waters of the North Atlantic Current from the approach to the Farero-Shetland Passage (characterized by SST anomalies from January and April in grid 60°N, 10°W). Thermal state of these three sea water areas (see formulas [1] and [2]) explains 58% changeability in P[75,15] which will be observed in the following winter (DJFM). The cause of the described correlation is attributed to the fact that the earlier thermal state of the above mentioned sea areas controls the occurrence of long waves, of W and E Wangengejm-Girs type during the following winter. Further, these waves influence the occurrence of low cyclones over the Atlantic part of the Arctic during winter resulting in adequate changes in mean monthly pressure. As a result, it can be stated that the interannual variability in air temperature over vast areas of Europe and over NW Asia is influenced by the processes observed over the North Atlantic and the Atlantic part of the Arctic. The research covers years 1971-2003 (ano-malies in SST taken from 1970-2002) due to the fact that the data have been not only accessible and reliable but also homogeneous with respect to climatological data of SST (CACSST data set (Reynolds and Roberts 1987, Reynolds 1988) and SST OI v.1. (Reynolds et al. 2002).
Źródło:
Problemy Klimatologii Polarnej; 2006, 16; 47-89
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozkład przestrzenny oraz skala ocieplenia Arktyki Atlantyckiej w 30-leciu 1980-2009 i jej porównanie z 'wielkim ociepleniem Arktyki' lat 30. XX wieku
Spatial distribution and the scale of the Atlantic Arctic warming in a 30-year period from 1980 to 2009 and its comparison with the 'great warming of the Arctic' in the 30-ties of the 20th century
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261031.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
trendy temperatury
ocieplenie Arktyki Atlantyckiej
air temperature
temperature trends
Atlantic Arctic warming
Opis:
Praca analizuje procesy zmian temperatury powietrza w Arktyce Atlantyckiej, jakie zachodziły w czasie współczesnego ocieplenia Arktyki (1980-2009). Przeprowadzono analizę trendów rocznych i sezonowych, obliczono również roczne i sezonowe różnice temperatury między średnimi z lat 2007-2009, a średnimi z lat 1980-1982. Analiza wykazała silne, wykazujące znaczne zróżnicowanie regionalne, wzrosty temperatury rocznej i sezonowej. Najsilniejszy wzrost w badanym okresie następował w okresie jesieni i zimy. Najsilniejsze trendy temperatury powietrza jesienią (> 0.15°Crok-1) występują w rejonie północo-zachodniej części Morza Karskiego oraz w rejonie Spitsbergenu. Zimą wartości najsilniejszych trendów przesuwają się ku zachodowi w rejon Spitsbergenu, a same trendy ulegają wzmocnieniu (>0.2°Crok-1). W okresie lata wartości trendów są niewielkie (+0.04-0.06°Crok-1), ale nad obszarami morskimi są statystycznie istotne. W okresie wiosny, poza pojedynczymi stacjami, trendów statystycznie istotnych brak. Nad obszarami lądowymi Eurazji, za wyjątkiem Półwyspu Skandynawskiego, trendy temperatury we wszystkich sezonach (porach roku) są słabe i przeważnie nieistotne. Znacznie silniejsze, i na ogół statystycznie istotne, trendy temperatury (poza okresem wiosny) występują nad obszarami morskimi, zwłaszcza tymi, do których jest swobodny dopływ wód atlantyckich. Zmiany rozkładu przestrzennego trendów i ich wartości w okresie jesiennym i zimowym wskazują, że wzrost temperatury powietrza jest powiązany ze strumieniami ciepła z oceanu do atmosfery. Porównanie sezonowego rozkładu trendów temperatury powietrza w czasie współczesnego ocieplenia z podobnym rozkładem trendów, jaki zaznaczał się w czasie 'ocieplenia Arktyki lat 30. XX wieku', wykazało, że na obszarze Arktyki Atlantyckiej w obu fazach ocieplenia Arktyki rozkład ten jest taki sam. Nie znajduje potwierdzenia na obszarze Arktyki Atlantyckiej wielokrotnie formułowana w literaturze przedmiotu teza, że w czasie obecnego ocieplenia Arktyki najsilniejsze trendy występują wiosną. Podobnie regionalny rozkład zmian temperatury powietrza zachodzący w czasie współczesnego ocieplenia jest taki sam, jak ten, który wystąpił w Arktyce Atlantyckiej w czasie ocieplenia Arktyki 'lat 30. XX wieku'. Najsilniejsze ocieplenie w obu fazach wzrostu temperatury w Arktyce Atlantyckiej wystąpiło nad tym samym obszarem, w którym w czasie ochłodzenia Arktyki w latach 60. XX wieku wystąpiło najsilniejsze ochłodzenie. Bezwzględna skala zmian temperatury i jej rozkład regionalny, jaka nastąpiła w latach 1980-2009 na obszarze Arktyki Atlantyckiej jest niemal taka sama, jak w czasie fazy ocieplenia 'lat 30. XX wieku'. Pozwala to twierdzić, że między oboma fazami ocieplenia tej części Arktyki brak jest różnic.
This work examines processes of changes in air temperature in the Arctic Atlantic which occurred during the contemporary Arctic warming (1980-2009, Fig. 1 and 2). An analysis of annual and seasonal trends has been carried out, as well as, calculations of the annual and seasonal temperature differences between the average of the years 2007, 2008 and 2009, and the average temperatures of the years 1980, 1981 and 1982. The analysis indicated strong, but showing considerable regional variation, increases in annual temperature and seasonal temperature (see Fig. 4 A2, B2, C2,D2 and 5B). The strongest increase in air temperature over the examined period was observed during the autumn and winter (Fig. 4 C2 and D2). The strongest trends of air temperature in autumn (> 0.15°Cyear-1) occur in the north-western part of the Kara Sea (between Franz Josef Land and Northern Land) and in the region of Spitsbergen (see Fig. 4 C1). In winter the strongest trends are moving westward into the region of Spitsbergen (Fig. 4 D1) and the same trends are strengthening (>0.2°Cyear-1). During summer the values of trends are small (+0.04-0.06°Cyear-1) but above the sea area these trends are statistically significant (Fig. 4 B1). In the spring, apart from individual stations, statistically significant trends are not noted (Fig. 4 A1). Over land areas of Eurasia, with the exception of the Scandinavian Peninsula, the temperature trends in all seasons (seasons of the year) are weak and mostly insignificant. Much stronger, and generally statistically significant, trends in temperature (apart from spring) occur over the sea areas, especially those where the Atlantic waters flow freely. Changes in the spatial distribution of trends and their values in the autumn and winter periods indicate that the increase in air temperature is correlated with heat flows from the ocean to the atmosphere. Comparison of seasonal distribution of temperature trends during the contemporary warming trend with a similar distribution, which was observed during the 'Arctic warming in the 30-ties 'of the twentieth century', indicated that the distribution is the same in the Arctic Atlantic in both phases of the Arctic warming. There is no proof of the thesis, so popular in literature, that trends are strongest in the contemporary Arctic warming in spring. Similarly, the regional distribution of air temperature changes occurring during the contemporary warming is the same as that which occurred in the Atlantic Arctic during the Arctic warming 'in the 30-ties of the twentieth century' (see Fig. 6). The Arctic in the 60-ties of the twentieth century experienced the strongest cooling (Fig. 7). The absolute scale of temperature changes and its regional distribution, which occurred in the years 1980-2009 in the Atlantic Arctic, is almost the same as during the warming phase 'of the 30-ties of the twentieth century'. This allows to state that there is no difference between those two phases of warming in this part of the Arctic.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 91-114
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stan termiczny Atlantyku Północnego a zlodzenie mórz Barentsa i Grenlandzkiego (1972-1994)
The thermal conditions of the North Atlantic and ice cover of the Barents and Greenland seas (1972-1994)
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260840.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
temperatury powierzchni oceanu
Morze Barentsa
Morze Grenlandzkie
zlodzenie mórz
ice cover
sea surface temperature
Barents Sea
Greenland sea
Opis:
This work deals with correlations between anomalies in SST (sea surface temperature) in the North Atlantic and the sea ice area of the Barents and Greenland seas. This research made use of mean monthly sea ice cover with density >= 10% observed in the Barents and Greenland seas over the period 1972-1994 (calculated on the bases of weekly area of sea ice cover of the above mentioned seas collected in NCDC data set ?1972-1994 Sea Ice Historical Data Set?). The thermal condition of the North Atlantic is characterised by the values of anomalies in mean monthly sea surface temperature (SST) in so called ?controlled grids? (2° x 2°) selected/appointed here by A.A.Marsz (1999a, 2001). Their location is presented in Fig.1. A standard statistical analysis has been used in this research (correlation analysis, regression analysis). The strongest synchronic correlations (observed in the same months) with the sea ice cover of the said seas have been noted in grids located north of the North Atlantic Current and characterising the following waters (Tables 1 and 2): of the Labrador Sea (located within the range of Labrador Current activity) - [50,52], those north of the Gulfstream delta - [40,52] and those located inside the circle of the cyclonic circulation of the North Atlantic - [30,54]. The highest coefficient values of linear correlation, at a level p<0.05 exceeding the statistical significance, were noted in winter months (December, January, February) and those spring ones (April, May, June) as well as in summer - in July and August (the Greenland Sea). There are also several asynchronic correlations. The results of analysis of multiple regression between the SST anomalies and the area of the sea ice cover indicated that the sea areas in which the changeability in their thermal condition has the greatest influence on the formation of the sea ice cover of the said seas are located in the western part of the North Atlantic.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 39-57
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na Północnej Drodze Morskiej (1979-2016)
Changes of sea surface temperature in the Russian Arctic Seas and their implications for shipping in the Northern Sea Route (1979-2016)
Autorzy:
Styszyńska, A.
Pastusiak, T.
Powiązania:
https://bibliotekanauki.pl/articles/260798.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody powierzchniowej
zmiany temperatury wody
Północna Droga Morska
Arktyka Rosyjska
sea surface temperature
changes in water temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej w latach 1979-2016. Stwierdzono, że w badanym okresie następował powolny wzrost temperatury wody. Jednakże tylko na Morzu Barentsa był on istotny statystycznie we wszystkich miesiącach roku, a w SW części Morza Karskiego oraz w zachodniej części Morza Czukockiego w okresie od czerwca do grudnia. W analizowanym 38.leciu największy wzrost temperatury wody powierzchniowej miał miejsce na Morzu Wschodniosyberyjskim (+0,57°C/10 lat w sierpniu i +0,44°C/10 lat we wrześniu) oraz w SW części Morza Karskiego w lipcu (+0,53°C/10 lat). W dalszym ciągu na wszystkich morzach, poza Morzem Barentsa, do czerwca włącznie temperatura wody ma wartości niższe od temperatury jej zamarzania przy swoistym dla danego morza zasoleniu. Najpóźniej temperaturę zamarzania osiągają wody Morza Barentsa gdzie w ostatniej dekadzie (2006-2015) na podejściu do północnego wejścia na PDM rzadko kiedy temperatura wody spadała poniżej temperatury zamarzania oraz wody Morza Czukockiego (w grudniu). Oznacza to, że statki pokonujące PDM w listopadzie będą miały szansę przepłynąć ją po „czystej” wodzie lub w cienkich, młodych lodach, które dla współczesnych statków nie stanowią większego zagrożenia.
The paper discusses changes of the mean monthly sea surface temperature on the Russian Arctic seas in the years 1979-2016. It was found that during the period under investigation there was a slow increase in water temperature. However, only in the Barents Sea it was statistically significant in all months of the year, and in the SW part of the Kara and western Chukchi seas from June to December. In the analyzed 38 years the highest rise in surface water temperature was recorded in the East Siberian Sea (+0.57°C/decade in August and +0.44°C/decade in September) and in the SW Kara Sea in July (+0.53°C/decade). Still on all these seas, except for the Barents Sea, until June inclusive, the water temperature was lower than its freezing temperature for a particular salinity specific for the sea. At the latest, freezing temperatures reached the waters of the Barents Sea, where in the last decade (2006-2015) at the approach to the north entrance of the Northern Sea Route (NSR) rarely water temperature has fallen below the freezing point. At the same time, the Chukchi Sea waters reached freezing temperatures in December. This means that vessels sailing through the NSR in November will have the chance to pass it through "ice free" water or in thin, young ice, which for modern ships is not a major threat.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 165-177
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozmiary i przebieg współczesnego ocieplenia Arktyki w rejonie mórz Barentsa i Karskiego
Dimension and course of the present warming of the Arctic in the region of the Barents and Kara seas
Autorzy:
Marsz, A. A.
Styszyńska, A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260739.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
współczesne ocieplenie
temperatura powietrza
trendy temperatury powietrza
temperatura powierzchni morza
wody atlantyckie
delta Golfsztromu
Arktyka
Morze Barentsa
Morze Karskie
present warming
air temperature
sea surface temperature
Atlantic waters
Gulf Stream
Arctic
Barents Sea
Kara sea
Opis:
Celem pracy była analiza rozmiarów i przebiegu współczesnego (1980-2007) ocieplenia wschod-niej części Arktyki Atlantyckiej w rejonie mórz Barentsa i Karskiego. Stwierdzono, że w tym okresie ocieplenie posiadało charakter pulsacyjny, składało się z kolejnych, coraz silniejszych wzrostów temperatury powietrza, oddzielanych od siebie okresami ochłodzeń. Poszczególnym fazom ocieplenia odpowiadają wzrosty transportu ciepłych wód atlantyckich do Morza Barentsa i wzrosty temperatury powierzchni morza (SST). Najwyraźniejsze fazy ocieplenia wystąpiły w latach 1988-1990 i 2002-2007. Najsilniejsze wzrosty temperatury zaznaczyły się w za-chodniej i północno-zachodniej części obszaru, najsłabsze na południowych wybrzeżach mórz Barentsa i Karskiego. Wzrost rocznej temperatury powietrza między okresami 1980-1982 a 2005-2007 może być szacowany na około 5°C w północo-zachodniej części obszaru (N i NW część Morza Barentsa) do około 1.5°C na południowo-wschod-nich wybrzeżach Morza Barentsa i południowo-zachodnich wybrzeżach Morza Karskiego. Analiza trendów wyka-zała, że statystycznie istotne trendy roczne występują jedynie na północnych i zachodnich skrajach badanego obszaru. W trendach sezonowych największą liczbę statystycznie istotnych trendów na poszczególnych stacjach obserwuje się latem. Średnie obszarowe trendy są jednakowe jesienią, zimą i wiosną (+0.065°Cźrok-1), wyraźnie niższe latem (+0.044°Cźrok-1), istotne statystycznie od wiosny do jesieni, nieistotne zimą. Analiza trendów mie-sięcznych wykazuje, że obraz, jaki daje analiza trendów sezonowych wiosny (III-V), lata (VI-VIII), jesieni (IX-XI) i zimy (XII-II) nie daje rzeczywistego obrazu rozkładu zmian temperatury w czasie. Wartości trendów miesięcznych rozłożone są skrajnie nierównomiernie, w okresie od listopada do stycznia oraz w kwietniu średnie wartości tren-dów na omawianym obszarze są większe od 0.1°Cźrok-1, w pozostałych miesiącach zawierają się w granicach od +0.020 (luty) do +0.052°Cźrok-1 (sierpień). Główną przyczyną obserwowanych zmian temperatury powietrza w rejonie obu mórz jest wzrost zasobów ciepła w wodach atlantyckich transportowanych do Arktyki z tropików i subtropików przez cyrkulację oceaniczną. Wzrost zasobów ciepła w wodach kierowanych z delty Golfsztromu na północ prowadzi z 1-4 letnim opóźnieniem do wzrostu SST i spadku powierzchni lodów na Morzu Barentsa, w mniejszym stopniu na Morzu Karskim. Oba czynniki (zmiany SST i zmiany powierzchni lodów) regulują następnie temperaturę powietrza, głównie poprzez wpływ na rozmiary strumieni ciepła z powierzchni morza do atmosfery. Znaczny wpływ na modyfikowanie zmian temperatury powietrza w stosunku do zmian wymuszanych przez zmiany SST ma regionalna cyrkulacja atmosferyczna, natomiast hemisferyczna (Oscylacja Arktyczna) i makroregionalna (NAO) mody cyrkulacyjne wywierają w rozpatrywanym okresie znikomy wpływ na zmiany temperatury powietrza, zmiany SST i zmiany powierzchni lodów morskich na morzach Barentsa i Karskim.
The aim of this work is the analysis of the dimensions and the course of contemporary (1980-2007) warming of the east part of the Atlantic Arctic in the region of the Barents and Kara seas (fig. 1, tab. 1). It has been noted that the warming in that period had pulsating character, was made up of consecutive stronger and stronger increases in air temperature, separated from each other by cooling periods (fig. 4, 6-7). The increase in the transport of warm Atlantic waters into the Barents Sea and the increase in SST (sea surface temperature) of this sea correspond to the subsequent phases of warming. The most significant phases of warming were noted in the years 1988-1990 and 2002-2007 (fig. 4). The strongest increases in temperature were marked in the west and north- west part of this region and the weakest in the south coast of the Barents and Kara seas (fig. 6-7). The annual increase in air temperature between the periods 1980-1982 and 2005-2007 may be estimated as about 5°C in the north-west part of this region (N and NW part of the Barents Sea) and as 1.5°C in the south-east coast of the Barents Sea and south – west coast of the Kara Sea (fig. 8). The analysis of trends indicated that the statistically significant annual trends are only observed in the north and west parts of the examined region (fig. 9-10). The greatest number of statistically significant trends in seasonal trends at the observed stations was noted in summer (table 2). The mean regional trends are equal in autumn, winter and spring (+0.065°Cźyear-1), significantly lower in summer (+0.044°Cźyear-1), statistically significant from spring to autumn and not significant in winter. The analysis of monthly trends indicated that the picture obtained from the analysis of seasonal trends (spring – III-V, summer – VI-VIII, autumn – IX-XI, winter – XII-II) does not reflect the real picture of the distribution of changes in temperature in time. The values of monthly trends are distributed in an extremely uneven way, in the period from November to January and in April the mean values of trends in the examined region are larger than 0.1°C year-1 and in the remaining months can be found within the limits from +0.020 (February) to +0.052°C year-1 (August) - see table 3. The main reason for the observed changes in air temperature in the region of both seas can be attributed to the increase in heat resources in the Atlantic waters transported to the Arctic from the tropics and sub-tropics with the oceanic circulation. The increase in heat resources in the waters imported north from the Gulf Stream, leads to the increase, delayed by 1-4 year in SST and to the decrease in the sea ice cover of the Barents Sea and, to a lesser extent, of the Kara Sea (tab. 4-6, fig. 13 and 15). Both factors (changes in SST and changes in sea ice extent) further control the air temperature mainly via the influence on the size of flow from the sea surface to the atmosphere. Great influence on the modification of changes in air temperature in relation to changes forced by changes in SST has the regional atmospheric circulation, whereas the hemispherical (AO) and macro-regional (NAO) circulation modes have little influence on the changes in air temperature, on changes in SST and on changes in sea ice extent of the Barents and Kara seas.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 35-67
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies