Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sea current" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zmiany zlodzenia mórz Grenlandzkiego i Barentsa w świetle zmian wskaźnika intensywności Prądu Labradorskiego (1972-1994). Wstępne wyniki analizy
Changes in sea ice cover of the Barents and Greenland seas in the light of changes of the Labrador Current intensity index (1973-1994). Preliminary result of analysis
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260876.pdf
Data publikacji:
2001
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
cyrkulacja atmosfery
Prąd Labradorski
Morze Grenlandzkie
Morze Barentsa
ice cover
atmospheric circulation
Labrador Current
Greenland sea
Barents Sea
Opis:
The Barents and Greenland seas are characterised by great seasonal and interannual changeability in the ice cover. Research carried out by many authors prove that the ice regime of these seas is influenced, to a great extent, by large scalę changes in atmospheric circulation and by the ocean surface circulation of the North Atlantic and the Arctic Ocean. Such correlations arę mainly of teleconnection type and show phase shifts (among others Mysak 1995, Deser et. al. 2000). One of the elements of the sea surface circulation of the Atlantic Ocean is the Labrador Current. The intensity of this current changes in time. In the periods when the Labrador Current becomes strong, its waters form vast anomalies in the sea surface temperaturę in the NW Atlantic. Further they spread eastwards along the north edge of the North Atlantic Current and with some delay, have influence on the atmospheric circulation in the central and east part of the North Atlantic (Marsz 1997, 1999). The way how the changes in the intensity of the Labrador Current influence the climate nas not been discovered yet. The intensity of this current can be defined by means of an index (WPL - Labrador Current Intensity lndex) established by Marsz (Internet). This work examines if there is direct correlatton between the changes in the sea-ice cover of the Barents and Greenland seas and the variability of the intensity index of the Labrador Current. The research madę use of homogenous data concerning a week-old sea ice cover observed at the analysed seas and the values of intensity index of the Labrador Current in the period January 1972 until December 1994 given by Marsz (obtained from NIC and NCDC - Asheville). It has been stated that over the examined 23-year period (1972-1994) the mean monthly the sea-ice cover in the Barents Sea indicates to strong correlation with the changes in the value of the intensity index of the Labrador Current (Table 1, Fig. 1). The changes in WPL result in the rhythm of changes in the sea-ice cover of the Greenland Sea only in winter (Table 2, Fig. 2). The occurrence of anomalies in the sea surface temperatures in the region SE of New Foundland seem to have great influence on the later formation (after few or several months) of the sea-ice cover in the Barents Sea (Fig. 1, 3. 4, formula 1-3). Changes in the intensity of Labrador Current in a given year explain 30% up to 50% changeability of the sea-ice cover developing in that sea from January to July in the following year (Table 1, Fig. 3). The area of the sea-ice cover in the Greenland Sea is mainly influenced by the intensity of the Transpolar Drift and East-Greenland Current transporting considerable amount of ice from the Arctic Ocean. Only during fuli winter season, from January to March, the correlation between the intensity of the Labrador Current and the sea-ice cover reaches statistical significance (Table 2). The results of the carried out analysis point to significant influence of advection factor on the sea-ice cover of the examined seas. In both analysed seas the phenomenon is connected to both the character and intensity of the Atlantic waters flow and to greater frequency of occurrence of specified forms of air circulation in the region of central and eastern part of the North Atlantic, possible at a given distribution of anomalies in surface waters of the North Atlantic.
Źródło:
Problemy Klimatologii Polarnej; 2001, 11; 93-104
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wód w Bramie Farero-Szetlandzkiej na temperaturę powietrza w Arktyce (1950-2005)
The influence of changes of the water temperature in the Faeroe-Shetland Channel on the air temperature in Arctic (1950-2005)
Autorzy:
Marsz, A. A.
Przybylak, R.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260775.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powierzchni oceanu
temperatura powietrza
Brama Farero-Szetlandzka
Prąd Norweski
Arktyka
sea surface temperature
air temperature
Faeroe-Shetland Channel
Norwegian Current
Arctic
Opis:
Praca analizuje związki między wskaźnikiem charakteryzującym zasoby ciepła w wodach atlantyckich wprowadzanych do Prądu Norweskiego, a dalej przez Prąd Zachodniospitsbergeński i Prąd Nordkapski do Arktyki, a roczną temperaturą powietrza w Arktyce. Analizę związków przeprowadzono dla Arktyki jako całości oraz jej sektorów: atlantyckiego, syberyjskiego, pacyficznego kanadyjskiego i sektora Morza Baffina. Wykazano istnienie silnie rozciągniętych w czasie (od 0 do 9 lat opóźnienia) związków z temperaturą powietrza w całej Arktyce, potwierdzających istotny statystycznie wpływ zmian zasobów ciepła w wodach na zmiany temperatury powietrza w Arktyce. Związki regionalne wykazują silne zróżnicowanie - na wzrost zasobów ciepła niemal natychmiastowo reaguje temperatura powietrza w Arktyce Atlantyckiej, z 2-6 letnim opóźnieniem temperatura powietrza w Arktyce Kanadyjskiej. Związki z temperaturą powietrza w sektorach syberyjskim i pacyficznym nie przekraczają progu istotności statystycznej. Zmiany temperatury powietrza w sektorze Morza Baffina wyprzedzają w czasie zmiany zasobów ciepła w wodach atlantyckich wprowadzanych następnie do Arktyki. To ostatnie może stanowić przyczynę okresowości w przebiegu temperatury powietrza w niektórych częściach Arktyki i strefy umiarkowanej.
Styszyńska (2005, 2007) has shown the existence of clear statistical relationships between heat contents in the waters of the Atlantic flowing towards the Arctic via the Norwegian, West Spitsbergen, and North Cape currents and the air temperature in Spitsbergen, Jan Mayen and Hopen between the years 1982 and 2002. These relationships extend in time: following rises in the heat content of the waters of the Norwegian Current, an increase in air temperature follows in the same year and the following year. Heat contents in the Atlantic waters flowing towards the Arctic are assessed according to the average sea surface temperature (SST) in the Faeroe-Shetland Channel (grid 62°N, 004°W) from January to April. These values are used to calculate a determining indicator such as FS1-42L, established as the average of two successive years: data from one year (k) and the year preceding it (k-1). The aim of this work is to investigate whether there are relationships between FS1-42L and the air temperature in both the whole of the Arctic and in individual Arctic sectors and, if so, what the character of these relationships is. The data analysed were a set of yearly air temperatures for the whole of the Arctic and for particular Arctic sectors (fig. 2) according to Przybylak (2007), as well as a set of monthly SST values including values calculated for the FS1-42L indicator (NOAA NCDC ERSST v.1; Smith and Reynolds, 2002). The primary methodology employed was Cross-Correlation Function Analysis. The FS1-42L was established as a first value, with the yearly air temperature used as a lagged value. The analysis was carried out for a 55-year period, from 1951 to 2005. The analysis showed that, taken as a whole, relationships between heat contents leading to the Arctic and air temperature over the whole of the Arctic (calculated from averages of individual sectors) were not particularly significant, though there was marked significance in these relationships from year 0 (fig. 3) to year +9 (fig. 4). The strongest relationships were those from the same year for which the FS1-42L was dated, after which relationships grew gradually weaker, until they finally disappeared in the tenth year. In the Atlantic sector of the Arctic the relationship was strong and almost immediate (fig 5). In the Siberian (fig. 6) and Pacific (fig. 7) sectors there was an absence of statistically significant relationships, and any that did exist were weak, with varying degrees of ?echo? in air temperature reactions. Air temperature in the Canadian sector (fig. 8) reacted to increases in heat contents with a delay of 2 to 6 years, with the strongest relations from FS1-42L being noted with a 5-year delay. The situation in Baffin Bay was entirely different, with air temperature changes preceding changes in the heat contents of the waters of the Faeroe-Shetland Channel by 1 to 6 years. The maximum strengths of these relations were -5 and -4 per year (fig. 9). Analysis of the reasons for these regional variations in the influence of FS1-42L on air temperature allows us to conclude that a major role is played by the bathymetry of the Arctic Ocean. Atlantic waters sinking beneath Arctic Surface Water (ASW) contribute to changes in the temperature of Arctic Intermediate Water (AIW). Independent of the routes taken by the processes, the influence of AIW on the air temperatures in the Siberian and Pacific sectors is limited, with these sectors being isolated by wide shelves from the Arctic Ocean. In the Canadian sector, which is separated by narrow shelves from deep-water parts of the Arctic Ocean and is situated a relatively short distance from the Atlantic sector, the influence of heat contents on the ASW is apparent, with a certain delay. Changes in the air temperature of the Baffin Bay sector are related to the variable activity of the Labrador Current, bringing cold waters to the North from the Gulf Stream delta. The force of strong cooling waters from the Labrador Current, with the appropriate delay, result in a lessening of the heat contents in the Faroe-Shetland Channel. Because of the fact that there is a strong positive correlation between the yearly air temperatures of the Canadian and Baffin Bay sectors, a chain of dependencies emerges: air temperature in the American sectors of the Arctic the flow of Atlantic waters FS1-42L air temperature in the Atlantic Arctic sector Ž air temperature in the Canadian sector should generate quasi-periodic (> 10 years) air temperature courses.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 45-59
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies