Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fuchino, Sakaé" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
More set-theory around the weak Freese–Nation property
Autorzy:
Fuchino, Sakaé
Soukup, Lajos
Powiązania:
https://bibliotekanauki.pl/articles/1205417.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang's Conjecture for $ℵ_ω$, we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals, a lot of ccc complete Boolean algebras of cardinality ≤ λ have the $ℵ_1$-Freese-Nation property provided that $μ^{ℵ_0} = μ$ holds for every regular uncountable μ < λ and the very weak square principle holds for each cardinal $ℵ_0 < μ < λ$ of cofinality ω ((Theorem 15). Finally, we prove that there is no $ℵ_2$-Lusin gap if P(ω) has the $ℵ_1$-Freese-Nation property (Theorem 17)
Źródło:
Fundamenta Mathematicae; 1997, 154, 2; 159-176
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies