Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "O.M." wg kryterium: Autor


Wyświetlanie 1-13 z 13
Tytuł:
Further Study on Thermal Performance of Porous Fin with Temperature-Dependent Thermal Conductivity and Internal Heat Generation using Galerkin’s method of Weighted Residual
Autorzy:
Sobamowo, M. G.
Kamiyo, O. M.
Adeleye, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/1046542.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Galerkin’s method of weighted residual
Porous Fin
Surface convective heat transfer
Temperature-Dependent Thermal Conductivity and Internal Heat Generation
Thermal performance
Opis:
This work is presented as a further study to our previous work, “Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat" published in "Thermal Science and Engineering Progress. 1 (2017) 39–52”, where it was assumed that the surface convection is negligible and heat is transferred only by natural convection in the porous fin. In this present study, such an assumption has been relaxed. Also, effects of surface convective heat transfer on the thermal performance of porous fin with temperature-dependent thermal conductivity and internal heat generation have been investigated using Galerkin’s method of weighted residual. The results of the Galerkin’s method of weighted residual show excellent agreement with the results of numerical method using shooting method coupled with Runge-Kutta method and also with the results of homotopy perturbation method. Thereafter, the developed analytical solutions are used to investigate the influences of the thermal model parameters on the thermal performance of the porous fin. It is found as the with the other model parameters that as the convective parameter increases, the rate of heat transfer from the base of the fin increases and consequently, the porous fin efficiency improves. However, increase in the nonlinear thermal conductivity parameter decreases the temperature distribution in the fin. Based on the high accuracy of the Galerkin’s method of weighted residual as displayed in this work, it is hoped that the simple analytical solutions given by the approximate analytical method will enhance the analysis of extended surfaces and also assist the designers.
Źródło:
World Scientific News; 2019, 138, 2; 167-191
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical approach into dynamic behavior of functionally graded circular plates resting on two-parameter foundations under excitation force
Autorzy:
Salawu, S. A.
Sobamowo, M. G.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1030674.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Laplace-Padè
Nonlinear dynamic analysis
functional graded plate
two-dimensional differential transform
two-parameter foundations
Opis:
The study of dynamic behavior of functional graded circular plates has gained significant attention in engineering in recent time due to the vast application of the material in engineering and manufacturing industry. This study focus on the application of two-dimensional differential transform method to investigate the dynamic response of functional graded circular plates resting on two-parameter elastic foundations. However, the maximum deflection is obtained using dimensionless scheme, Laplace-Padè approximant is used to treat the small domain issue of the analytical solutions. Also, the solutions obtained are used for parametric investigation. From the results, it is found out that increase in Winkler, Pasternak and combine foundation parameters results to decrease in maximum deflection, increase in material properties of the functional graded plates leads to decrease in maximum deflection, clamped boundary condition has the lower deflection. Increasing the excitation frequency results in lower deflection. Results obtained maybe used as benchmark for validation of method using other approaches.
Źródło:
World Scientific News; 2020, 139, 2; 115-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal assessment of a convective porous moving fins of different material properties using Laplace-variational iterative method
Autorzy:
Sobamowo, M. G.
Kamiyo, O. M.
Salami, M. O.
Yinusa, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/1030678.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Exact Method
Laplace-variational iterative method
Thermal response
Variable thermal conductivity
variational iterative method
Opis:
Investigation on thermal responses of different materials subjected to variant environmental condition has been a subject of ever-increasing research interest for decades. As such, research studies have shown different materials exhibiting peculiar characteristics of commercially used heat enhancement devices. Therefore, this work presents an investigation on thermal behaviour of a convective porous moving fins with temperature dependent thermal conductivity for five different materials. These materials include copper, Aluminium, Silicon nitride, Silicon carbide and Stainless steel. A hybrid method, viz- Laplace-variational iterative method (LVIM) is used to solve the model equation developed. And a perfect agreement is achieved when the result obtained from LVIM is verified with the exact solution. The result obtained shows that silicon carbide compete favourably with copper as the most efficient material in heat enhancement, while stainless steel shows the least performance. It is hoped that this work will serve as a template and a helpful tool for both scientist and engineers’ in future design of fins.
Źródło:
World Scientific News; 2020, 139, 2; 135-154
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Analysis of Jump and Bifurcation Phenomena in a Forced Vibration of Geometrical Nonlinear Cantilever Beam: Application of Differential Transformation Method
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Oyelade, A. O.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1031911.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Bifurcation Phenomenon
Differential transformation method
Jump phenomenon
Nonlinear vibration
Phase plane
Opis:
One of the classical features exhibited in nonlinear dynamics of engineering systems is the jump phenomenon, which is the discontinuous change in the steady state response of a system as a parameter is slowly varied. Such phenomenon is characterized by large amplitude dynamic responses of systems to small amplitude disturbances. It is established that this phenomenon cannot be described by the standard asymptotic and perturbation methods because they are limited to the study of small amplitude responses to small disturbances. Therefore, this paper presents the application of differential transformation method-Padé approximant to the solution of jump and bifurcation phenomena for a geometrical nonlinear cantilever beam subjected to a harmonic excitation. The accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through a comparison of the results of the analytical solution with the corresponding results of the numerical solution obtained by fourth-order Runge-Kutta method and also with the results in a past study using harmonic balancing method. With the aid of the differential transformation method-Padé approximant, the effects of the nonlinear parameters in the model equation on the dynamic response of the beam are investigated. Also, the sensitivity of the beam to the external excitation amplitude is analyzed. In the distributed forced vibration, the jump phenomenon appeared in the response amplitude by variation of the excitation frequency while in the resonance frequency, the beat phenomenon with harmonic motion is seen for low level of excitation amplitude. At a certain frequency, the jump and bifurcation phenomena are seen in the curves of responses versus excitation amplitude. Additionally, the plots of the phase plane and time history of the system response are shown. It is established that the differential transformation method is a very useful mathematical tool for dealing with the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 26-58
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Force Modeling and Dynamic Behaviour of Multi-Dimensional Vibration Assisted Micro-End Milling: Linear and Nonlinear Analyses
Autorzy:
Sobamowo, M. G.
Ojolo, S. J.
Olawale, O. K.
Adesina, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/1030114.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Dynamic analysis
Micro-milling
Multidimensional vibration
Stability
Vibration assisted micro-milling
Opis:
The concept of component miniaturization is core in the production of sensitive components of the micro, nano and meso-scale. Vibration assisted micro-end milling is a miniaturized machining method that effectively produce these components. This paper presents the linear and nonlinear models describing the vibratory behavior of the sensitive system bearing in mind the amplitude stability phenomenon. The linear case is considered and solved analytically, the non-linear case is solved using differential transform method. With the aid of the developed solutions, parametric studies are carried out and the results are discussed. It is hope that the present study will help the manufacturing industry’s desire for maximizing metal removal rates while maintaining acceptable surface finish and tool life especially in the micro machining of various components for industrial applications, medical and energy industries.
Źródło:
World Scientific News; 2020, 143; 224-261
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Internal Heat Generation on the Thermal Stability of a Porous Fin
Autorzy:
Sobamowo, M. G.
Jayesimi, L. O.
Waheed, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/1031875.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Differential Transformation Method
Porous Fin
Temperature-Dependent Internal Heat Generation
Thermal analysis
Thermal performance
Opis:
In this study, the effects of internal heat generation on thermal stability of porous fin is theoretical investigated using differential transform method. The parametric studies reveal increase in the internal heat generation leads to increase in the value or the range of the thermal stability of the fin. The internal heat generation can be used to control the thermal instability in the fin. Also, as the porosity parameter increase, the rate of heat transfer from the base of the fin and consequently improve the efficiency of the fin increase. However, a high value or an excessive internal heat generation results in an undesirable situation where some of the heat energy cannot escape to the sink and instead ends up flowing into the prime surface and the fin tends to store heat rather than dissipating it. This scenario defeats the prime purpose of the cooling fin. Therefore, the operational parameters must be carefully selected to ensure that the fin retains its primary purpose of removing heat from the primary surface.
Źródło:
World Scientific News; 2020, 149; 110-127
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Efficiency of Differential Transformation Method to the Solutions of Large Amplitude Nonlinear Oscillation Systems
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Alozie, S. I.
Salawu, S. A.
Salami, M. O.
Powiązania:
https://bibliotekanauki.pl/articles/1031949.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Large amplitude
Oscillation system
Strong nonlinearity
Opis:
In this work, the efficiency of differential transformation method to the solutions of large amplitude nonlinear oscillatory systems is further established. Two cases of oscillation systems, nonlinear plane pendulum and pendulum in a rotating plane are considered. Without any linearization, discretization or series expansion of the sine and cosine of the angular displacement in the nonlinear models of the systems, the differential transformation method with Padé approximant is used to provide analytical solutions to the nonlinear problems. Also, the increased predictive power and the high level of accuracy of the differential transformation method over the previous methods are presented. The extreme accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method. Also, with the aid of the analytical solutions, parametric studies were carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 139, 1; 1-60
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear Analysis of a Large-Amplitude Forced Harmonic Oscillation System using Differential Transformation Method-Padé Approximant Technique
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Oyekeye, M. O.
Folorunsho, S. S.
Powiązania:
https://bibliotekanauki.pl/articles/1031931.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Large amplitude; Oscillation system; Strong nonlinearity; Forced vibration; Differential transformation method-Padé approximant techniques
Opis:
This work presents the nonlinear analysis of forced harmonic oscillation system using differential transformation method-Padé approximant techniques. Without any series expansion of the included sine and cosine of the angular displacement in the nonlinear model of the system, an improved analytical solution of the dynamic model is presented. The high level of accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through comparison of the results of the solution with the corresponding numerical solutions obtained by fourth-fifth-order Runge-Kutta method, homotopy perturbation method and energy balance methods. Also, with the aid of the analytical solutions, parametric studies are carried to study the impacts of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The method avoids any numerical complexity and it is very simple, suitable and useful as a mathematical tool for dealing the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 139-155
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study on the Effects of Inclined Magnetic Field, Flow Medium Porosity and Thermal Radiation on Free Convection of Casson Nanofluid over a Vertical Plate
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Makinde, O. D.
Powiązania:
https://bibliotekanauki.pl/articles/1046549.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Casson nanofluid
Flow medium porosity
Free convection
Inclined magnetic field
Thermal radiation
Variational homotopy perturbation method
Opis:
In this paper, variational homotopy perturbation method with Padé approximant technique is applied to investigate the impacts of inclined magnetic field, flow medium porosity and thermal radiation on free convection flow and heat transfer of Casson nanofluids over a vertical plate. The accuracies of the developed analytical methods are verified by comparing the results of the analytical solutions with the results of past works as presented in literature. Thereafter, the analytical solutions are used to investigate the effects of thermal radiation; Prandtl number, nanoparticles volume-fraction, shape and type on the flow and heat transfer behaviour of various nanofluids over the flat plate. It is observed that both the velocity and temperature of the nanofluid as well viscous and thermal boundary layers increase with increase in the radiation parameter. The velocity and temperature of the nanofluid decreases and increases, respectively as the Prandtl number and volume-fraction of the nanoparticles in the basefluid increase. The maximum decrease in velocity and maximum increase in temperature are caused lamina shaped nanoparticle and followed by platelets, cylinder, bricks and sphere-shaped nanoparticles, respectively. It is hoped that the present study will enhance the understanding of free convection boundary-layer problems under the influence of thermal radiation as applied in various engineering processes.
Źródło:
World Scientific News; 2019, 138, 1; 1-64
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chebyshev Spectral Collocation Method to Micropolar Fluid Flow through a Porous Channel driven by Suction/Injection with High Mass Transfer
Autorzy:
Jayesimi, L. O.
Sobamowo, M. G.
Akinshilo, A. T.
Waheed, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/1030143.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Chebyshev spectral collocation method
Mass Transfer
Micropolar fluids
Porous media
Opis:
This paper presents the application of Chebyshev spectral collocation method to flow analysis of a micropolar fluid conveyed through porous channel driven by suction or injection with high mass transfer. Effects of flow and rotation parameters such as Reynolds number and micro rotation parameters on the flow characteristics of the micropolar fluid are investigated using the developed approximate analytical solutions through the method. Comparing the results of the numerical solutions obtained in this study with the other results of the other methods in literature, very good agreements are established. The results obtained from this work can be used to further the study of the behavior of micropolar fluids in applications such as lubricants, blood flow porous media, micro channels and flow in capillaries.
Źródło:
World Scientific News; 2020, 143; 39-52
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential Transform Method for the Kinetic Analysis of Thermal Inactivation of Enzyme as Applied in Biotechnology
Autorzy:
Adeleye, O. A.
Sobamowo, M. G.
Akinnukawe, B. I.
Powiązania:
https://bibliotekanauki.pl/articles/1031487.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytical solution
Differential transformation method
Enzyme
Kinetic analysis
Thermal inactivation
Opis:
In this work, approximate analytical solution is developed using differential transformation method for finding the molar concentration of the native and denatured enzyme in terms of second-order rate constant. Also, the obtained solutions are used to study the kinetics of thermal inactivation of enzyme as applied in biotechnology. The analytical solution was validated with numerical solution using fourth- order Runge-Kutta. Good agreement was established between the numerical and approximated analytical solutions.
Źródło:
World Scientific News; 2020, 142; 135-149
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear Thermally Induced Dynamic Analysis of Non-Homogenous Rectangular Plate with Varying Thickness Using Three-Dimensional Differential Transform Method
Autorzy:
Sobamowo, M. G.
Salawu, S. A.
Yinusa, A. A.
Makinde, O. D.
Powiązania:
https://bibliotekanauki.pl/articles/1046541.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Non-Homogenous
Three-dimensional differential transform
thermal induced dynamic vibration
varying thickness
Opis:
The practical importance of thermally induced varying thickness plates has recently become an area of increase interest for engineers due to its wide applications. The temperature effect alters the modulus of elasticity of the plate causing an irrational behavior of the plate. This present study presents the application of three-dimensional differential transform method (3D-DTM) to nonlinear thermally induced dynamic analysis of non-homogenous rectangular plate with varying thickness under external excitation. Three-dimensional differential transform is used to obtain the analytical solution to the governing differential equation and the solution is used for the parametric studies. It is shown that, taper constant increases with increase in maximum deflection, thermal constant increases with decreases in maximum deflection, increases in aspect ratio leads to decreases in maximum deflection, increase in natural frequency results to increases in maximum deflection and non-homogeneity constant increases with increase in maximum deflection. Findings of the research is expected to add value to existing knowledge of classical plate theory.
Źródło:
World Scientific News; 2019, 138, 2; 141-166
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Transient Heat Transfer in a Longitudinal Fin with Functionally Graded Material in the Presence of Magnetic Field using Finite Difference Method
Autorzy:
Sobamowo, M. G.
Oguntala, G. A.
Yinusa, A. A.
Adedibu, A. O.
Powiązania:
https://bibliotekanauki.pl/articles/1046560.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Lorentz force
convective-radiative fin
finite difference method
functionally graded materials
transient response
Opis:
In this study, finite difference method is used for the numerical analysis of the transient heat transfer analysis of a convective-radiative fin with functionally graded materials under the influence of Lorentz force is presented. Three cases of developed nonlinear thermal models of linear, quadratic, exponential and power-law variations of thermal conductivity are considered. The accuracy of the developed numerical code is verified as the results of the numerical solutions established good agreements with the results of the exact analytical solutions. Through the numerical solutions, parametric studies are carried out. From the results, it is shown that increase in radiative and magnetic field parameters as well as in-homogeneity index improve the thermal performance of the fin. Also, the transient responses reveal that the FGM fin with linear-law and power-law function shows the slowest and fastest thermal responses, respectively. This study will provide a very good platform for further studies on the design of extended surfaces where the surrounding fluid is influenced by a magnetic field.
Źródło:
World Scientific News; 2019, 137; 166-187
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies