Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "krzepnięcie" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Effect Of Natural Convection On Directional Solidification Of Pure Metal
Wpływ konwekcji swobodnej na krzepnięcie kierunkowe czystego metalu
Autorzy:
Skrzypczak, T.
Węgrzyn-Skrzypczak, E.
Winczek, J.
Powiązania:
https://bibliotekanauki.pl/articles/356653.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pure metal
solidification
sharp interface
natural convection
Finite Element Method (FEM)
Level Set Method
czysty metal
krzepnięcie
ostry front
konwekcja naturalna
metoda elementów skończonych
metoda poziomic
Opis:
The paper is focused on the modeling of the directional solidification process of pure metal. During the process the solidification front is sharp in the shape of the surface separating liquid from solid in three dimensional space or a curve in 2D. The position and shape of the solid-liquid interface change according to time. The local velocity of the interface depends on the values of heat fluxes on the solid and liquid sides. Sharp interface solidification belongs to the phase transition problems which occur due to temperature changes, pressure, etc. Transition from one state to another is discontinuous from the mathematical point of view. Such process can be identified during water freezing, evaporation, melting and solidification of metals and alloys, etc. The influence of natural convection on the temperature distribution and the solid-liquid interface motion during solidification of pure copper is studied. The mathematical model of the process is based on the differential equations of heat transfer with convection, Navier-Stokes equation and the motion of the interface. This system of equations is supplemented by the appropriate initial and boundary conditions. In addition the continuity conditions at the solidification interface must be properly formulated. The solution involves the determination of the temporary temperature and velocity fields and the position of the interface. Typically, it is impossible to obtain the exact solution of such problem. The numerical model of solidification of pure copper in a closed cavity is presented, the influence of the natural convection on the phase change is investigated. Mathematical formulation of the problem is based on the Stefan problem with moving internal boundaries. The equations are spatially discretized with the use of fixed grid by means of the Finite Element Method (FEM). Front advancing technique uses the Level Set Method (LSM). Chorin’s projection method is used to solve Navier-Stokes equation. Such approach makes possible to uncouple velocities and pressure. The Petrov-Galerkin formulation is employed to stabilize numerical solutions of the equations. The results of numerical simulations in the 2D region are discussed and compared to the results obtained from the simulation where movement of the liquid phase was neglected.
Praca porusza problematykę modelowania kierunkowego krzepnięcia czystego metalu. Podczas tego procesu obserwuje się formowanie ostrego frontu krzepnięcia w postaci powierzchni separującej ciecz i ciało stałe w przypadku trójwymiarowym lub krzywej w przypadku płaskim. Położenie oraz kształt interfejsu krzepnięcia zmieniają się w czasie a wartości prędkości lokalnych zależą od różnicy intensywności strumieni ciepła po stronie ciała stałego i cieczy. Krzepnięcie z ostrym frontem należy do grupy procesów z przemianami fazowymi, które warunkowane są zmianami temperatury, ciśnienia, itp. Przejście fazowe z jednego stanu w drugi ma z matematycznego punktu widzenia charakter nieciągły. Procesy tego typu można zidentyfikować podczas zamarzania wody, parowania, topnienia i krzepnięcia metali i stopów, itp. W pracy zbadano wpływ zjawiska konwekcji swobodnej na chwilowy rozkład temperatury oraz ruch granicy narastania fazy stałej podczas krzepnięcia czystej miedzi w obszarze płaskim. Model matematyczny sformułowano na bazie równań różniczkowych transportu ciepła z konwekcją, Naviera-Stokesa i ruchu frontu krzepnięcia. Układ równań uzupełniono odpowiednimi warunkami początkowymi i brzegowymi oraz warunkami ciągłości na froncie. Rozwiązanie obejmuje chwilowe rozkłady temperatury, prędkości oraz położenie granicy międzyfazowej. Sformułowanie matematyczne zagadnienia bazuje na modelu z ruchomymi granicami wewnętrznymi, czyli tzw. modelu Stefana. Równania zostały zdyskretyzowane przestrzennie z wykorzystaniem metody elementów skończonych. W modelu numerycznym wykorzystano siatkę niezmienną w czasie. Do propagacji frontu użyto metody poziomic. Do wyznaczenia prędkości w cieczy wykorzystano metodę rzutowania, która poprzez eliminację ciśnienia z równania pędu pozwala na rozprzężenie prędkości i ciśnień. Równania rozwiązano z wykorzystaniem sformułowania Petrova-Galerkina. Omówiono wyniki analizy numerycznej oraz porównano je z wynikami otrzymanymi z symulacji, w której pominięto ruch cieczy.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 2A; 835-841
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Temperature and Velocity Fields During Filling of Continuous Casting Mould
Autorzy:
Sowa, L.
Skrzypczak, T.
Kwiatoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/379679.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
continuous casting
numerical simulation
molten metal flow
krzepnięcie
odlewanie
symulacja numeryczna
Opis:
In this paper, the mathematical model and numerical simulations of the molten steel flow by the submerged entry nozzle and the filling process of the continuous casting mould cavity are presented. In the mathematical model, the temperature fields were obtained by solving the energy equation, while the velocity fields were calculated by solving the momentum equations and the continuity equation. These equations contain the turbulent viscosity which is found by solving two additional transport equations for the turbulent kinetic energy and its rate of dissipation. In the numerical simulations, coupling of the thermal and fluid flow phenomena by changes in the thermophysical parameters of alloy depending on the temperature has been taken into consideration. This problem (2D) was solved by using the finite element method. Numerical simulations of filling the continuous casting mould cavity were performed for two variants of liquid metal pouring. The effect of the cases of pouring the continuous casting mould on the velocity fields and the solid phase growth kinetics in the process of filling the continuous casting mould was evaluated as these magnitudes have an influence on the high quality of the continuous cast steel slab.
Źródło:
Archives of Foundry Engineering; 2018, 18, 1; 115-118
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical and numerical basis of binary alloy solidification models with substitute thermal capacity. Part 2
Autorzy:
Węgrzyn-Skrzypczak, E.
Skrzypczak, T.
Powiązania:
https://bibliotekanauki.pl/articles/122359.pdf
Data publikacji:
2014
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
solidification
binary alloy
substitute thermal capacity
numerical calculations
krzepnięcie
stop podwójny
zastępcza pojemność cieplna
obliczenia numeryczne
Opis:
In this paper, the results obtained from five models of the solidification with substitute thermal capacity were compared. The calculations were carried out for steel containing 0.35% carbon with using an in-home solver based on the finite element method (FEM). A comparison was made on the base of analysis of the cooling curves at selected nodes.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2014, 13, 2; 141-147
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mathematical and numerical basis of binary alloy solidification models with substitute thermal capacity. Part 1
Autorzy:
Węgrzyn-Skrzypczak, E.
Skrzypczak, T.
Powiązania:
https://bibliotekanauki.pl/articles/122433.pdf
Data publikacji:
2014
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
solidification
substitute thermal capacity
modeling
finite element method
krzepnięcie
zastępcza pojemność cieplna
modelowanie
metoda elementów skończonych
Opis:
The presented work is focused on the basis of mathematical and numerical descriptions of the binary alloy solidification problem. The mathematical formulation is based on the so-called substitute thermal capacity, which implies a change in the specific heat of solidifying material. In the literature one can find many ways to define this parameter. Five models, differing in the description of the substitute thermal capacity as well as the numerical model using the finite element method (FEM) are considered.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2014, 13, 2; 135-140
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Mesh Quality on the Numerical Solution of the Solidification of Pure Metal
Autorzy:
Skrzypczak, T.
Węgrzyn-Skrzypczak, E.
Powiązania:
https://bibliotekanauki.pl/articles/381672.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
pure metal
Stefan problem
finite element method
krzepnięcie stopu
technologia informatyczna
przemysł odlewniczy
metal czysty
zagadnienie Stefana
metoda elementów skończonych
Opis:
The paper presents a method of mathematical and numerical modelling of directional solidification process of pure metal in the two-dimensional region. In this case, the thermal conditions associated with the process favours the occurrence of sharp solidification front. The mathematical description of the process is based on the Stefan formulation with appropriate continuity conditions on the solid-liquid interface. The numerical model is based on the finite element method (FEM). The calculations were made on a fixed mesh with diffused solidification front to avoid the difficulties associated with the discontinuity. Temporary position of the interface was calculated with the use of the level set method (LSM). Effect of the quality of the spatial discretization on the accuracy of numerical solution was investigated. Obtained results of the temporary front position were compared with the analytical solution. The correlation between the quality of the spatial discretization and the accuracy of the results was observed. Methods used in the work had significant impact on the computation time and helped avoid the explicit consideration of discontinuity of heat flux on the front.
Źródło:
Archives of Foundry Engineering; 2013, 13, 2 spec.; 89-92
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies