Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maceral group" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
The influence of the discrepancies in the observers decisions on the process of identification of maceral groups using artificial neural networks
Autorzy:
Skiba, M.
Powiązania:
https://bibliotekanauki.pl/articles/92086.pdf
Data publikacji:
2016
Wydawca:
Główny Instytut Górnictwa
Tematy:
analiza ilościowa węgla
quantitative analysis of coal
maceral group
artificial neural network
grupy maceralne
sztuczna sieć neuronowa
Opis:
When analyzing the sorption properties of coal in the context of gas hazards in underground mining, focus should be placed on a number of aspects. These include the internal structure of coal, its structural properties, and its maceral composition. The share of particular macerals is most often determined manually, which e due to the huge diversity of petrographic features e can pose some difficulties even for experienced petrographers. Over the past few years, studies have been carried out into the use of artificial neural networks as a means to develop a methodology that would enable the identification of maceral groups based solely on the knowledge which the computer gains from sample macroscopic images and the information about their content provided by the observer. This paper investigates the effect that the selection of the training set, defined by particular teachers e petrographers, has on the effectiveness of selected neural classifiers. The research was carried out with the participation of three expert petrographers, who classified maceral groups in the macroscopic images of a lump sample of coal extracted from the Upper Silesian Coal Basin. Next, the feature space describing particular classes was defined using image analysis methods. The parameters defining that space were determined each time within a certain neighborhood of the studied points. Thus, the obtained sets were used to train neural networks (MLP) and to indicate the optimal network architecture for each expert. The research also included the identification of the influence that the change of the “teacher” e observer has on the identification process of the analyzed objects, as well as the automatic analysis of those measuring points which were classified differently by the observers e petrographers. The results presented concerning the objectivization of the quantitative analyses of coal indicate that modern methods of image analysis and artificial neural networks can contribute to the improvement of these measurements. However, it requires close cooperation between the designer of the neural network and the expert e petrographer.
Źródło:
Journal of Sustainable Mining; 2016, 15, 4; 151-155
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies