Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Banach contraction theorem" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On a vector-valued local ergodic theorem in $L_∞$
Autorzy:
Sato, Ryotaro
Powiązania:
https://bibliotekanauki.pl/articles/1217311.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
vector-valued local ergodic theorem
reflexive Banach space
d-dimensional semigroup of linear contractions
contraction majorant
Opis:
Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
Źródło:
Studia Mathematica; 1999, 132, 3; 285-298
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies