Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Saravanan, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Toxic Gases Detection and Tolerance Level Classification Using Machine Learning Algorithms
Autorzy:
Deepan, S.
Saravanan, M.
Powiązania:
https://bibliotekanauki.pl/articles/27311941.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Artificial Sensing Methodology
Machine Learning
Toxic gases
Tolerance Detections
Opis:
With rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 499--506
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Activity pattern and food habits of Grizzled Giant Squirrel (Ratufa macroura) in Srivilliputhur Grizzled Squirrel Wildlife Sanctuary, Tamil Nadu, Southern India
Autorzy:
Babu Rao, G.
Nagarajan, R.
Saravanan, M.
Baskaran, N.
Powiązania:
https://bibliotekanauki.pl/articles/11307.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Opis:
Activity pattern and food habits of Grizzled Giant Squirrel were investigated in Srivilliputhur Grizzled Giant Squirrel Wildlife Sanctuary from December 2011 to March 2012. Focal animal sampling method was used to record the activity pattern and food habits. Sampling was done in three different habitats viz., Private land, Reserve forest and Temple land. Feeding was the dominant activity accounting for 35.4% of the activity period. Bimodal feeding pattern was observed in Squirrels, the observations were made from early morning hours to till (0600-1800) late evening hours. The Squirrels feed upon 23 plant species; among them 11 were trees species, 10 climbers and 2 shrubs. Seven types of plant parts were used by Squirrels. Leaf consumption was high (38%) followed by fruit (24%). The high consumption of leaves was due to easy availability of leaves and limited availability of other plant parts. Squirrel‟s invasion into Private Land and Temple Land was observed which can be attributed to abundance and easy availability of food plants, canopy continuity and less predatory pressure.
Źródło:
International Letters of Natural Sciences; 2015, 05
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies