Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "exposure" wg kryterium: Temat


Tytuł:
Glin metaliczny
Aluminum
Autorzy:
Sapota, A.
Nasiadek, M.
Powiązania:
https://bibliotekanauki.pl/articles/138031.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
glin
pyły
dymy
układ oddechowy
narażenie zawodowe
wartości normatywne
aluminum
dusts
fumes
respiratory tract
occupational exposure
exposure limits
Opis:
Glin (Al) jest srebrzystobiałym metalem o masie atomowej 26,98 i temperaturze topnienia 660,4 C. Zawartość glinu w skorupie ziemskiej wynosi około 8%. Produkcja glinu polega na elektrolizie tritlenku glinu (Al2O3) zmieszanego z topnikami. Aluminium znajduje zastosowanie do wyrobu naczyń powszechnego użytku i aparatury chemicznej. Jest wykorzystywany przy produkcji samochodów, samolotów, w metalurgii, do pokrywania zwierciadeł teleskopów, papierów dekoracyjnych i opakowań. Sproszkowany metal stosuje się w laboratoriach jako czynnik redukujący, przy produkcji materiałów wybuchowych, pigmentów, proszków błyskowych i farb oraz przy spawaniu części stalowych metodą Goldschmidta. Narażenie zawodowe w przemyśle wiąże się z produkcją glinu, technologiami spawania oraz produkcją finalnych wyrobów z glinu. Nie ma danych dotyczących toksyczności ostrej u ludzi. Natomiast przewlekłe narażenie zawodowe ludzi na pyły glinu prowadzi do wystąpienia w płucach zmian o charakterze pylicy płuc. Obserwowano także następujące zmiany: zwłóknienia w płucach, zapalenie pęcherzyków płucnych, proteinozę pęcherzyków płucnych, zapalenia oskrzeli i przewlekłe śródmiąższowe zapalenie płuc. W kilku badaniach populacji pracowników narażonych zawodowo na pyły glinu wykazano wzrost liczby przypadków występowania zmian zwłóknieniowych w płucach, zależnie od stężenia frakcji respirabilnej pyłów w powietrzu. Działanie zwłókniające pyłów glinu wykazano również w kilku eksperymentach przeprowadzonych na zwierzętach doświadczalnych. W kilku pracach podjęto próbę oceny zaburzeń ze strony układu nerwowego u pracowników narażonych na dymy i pyły glinu. Nie ma jednak wystarczających dowodów takiego działania, gdyż w żadnym z tych badań nie stwierdzono objawów ogniskowych organicznego uszkodzenia ośrodkowego i obwodowego układu nerwowego. Glin nie wykazuje działania mutagennego, genotoksycznego ani rakotwórczego. Nie działa również embriotoksycznie i teratogennie. Ze względu na fakt, że narażenie zawodowe na pyły glinu jest narażeniem złożonym, w którym występują również inne związki pylicotwórcze, wydaje się, że wyliczona wartość normatywu higienicznego powinna obejmować stężenie glinu zarówno frakcji respirabilnej pyłu jak i pyłu całkowitego. Za podstawę wyliczenia wartości NDS przyjęto badania, w których wykazano, że u badanych 53 pracowników narażonych na pyły glinu o stężeniu 1,4÷10 mg/m3 frakcji respirabilnej wykryto 1 przypadek zwłóknienia płuc i 3 przypadki z niewielkimi zmianami w płucach, wskazującymi na początki procesów zwłóknieniowych. Wzrost stężeń frakcji respirabilnej powyżej 10 mg/m3 (10÷100 mg/m3) przyczyniał się do wzrostu liczby obserwowanych przypadków zwłóknień w płucach. Stężenie 10 mg/m3 (frakcja respirabilna) przyjęto jako wartość LOAEL. Do wyliczenia wartości NDS przyjęto cztery współczynniki niepewności. Uzyskano wartość NDS na poziomie 2,5 mg/m3, którą przyjęto dla glinu zawartego w pyle całkowitym. Natomiast wartość NDS pyłu respirabilnego stanowi średnio 50% obliczonej wartości dla pyłu całkowitego, czyli około 1,2 mg/m3 (jako dymy, pył respirabilny). Ustalone wartości NDS powinny zabezpieczyć pracowników przed działaniem zwłókniającym pyłów i dymów glinu powstających w różnych procesach wytwarzania i przetwarzania aluminium, a także przed działaniem zwłókniającym innych związków pylicotwórczych towarzyszących tym procesom. Nie ma podstaw do ustalenia wartości DSB. Ze względu na fakt, że działanie drażniące dymów i pyłów występuje jedynie w warunkach narażenia długotrwałego, nie ma podstaw do ustalenia wartości NDSCh.
Aluminum (Al) is a silver-white metal with the atomic weight of 26.98 and melting temperature of 660.4 C. The earth’s crust contains about 8% aluminum. Aluminum production consists in electrolysis of aluminum oxide (Al2 O3). Aluminum is used to produce household equipment and various utensils, as well as chemical appliances, aircraft, motor vehicles, in metallurgy, to cover the surface of telescope mirrors, in decorative wrapping paper and packaging. Powdered metal is used in laboratories as a reduction factor in the manufacturing explosive materials, paints, pigments and in welding with Goldschmidt’s method. Occupational exposure occurs during aluminum production, in welding technologies, as well as in manufacturing final aluminum products.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 3 (49); 77-95
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kobalt i jego związki nieorganiczne – w przeliczeniu na Co
Cobalt
Autorzy:
Sapota, A.
Daragó, A.
Powiązania:
https://bibliotekanauki.pl/articles/137354.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
kobalt
toksyczność
narażenie zawodowe
NDS
cobalt
toxicity
occupational exposure
MAC
Opis:
W większości związków kobalt (Co) występuje na II lub III stopniu wartościowości. Związki kobaltu(III) reagują z różnymi kwasami, tworząc sole, podczas gdy kobalt(II) jest mniej reaktywny. Pierwiastek ten występuje w organizmach żywych i jest zaliczany do mikroelementów oraz jest składnikiem witaminy B12. Kobalt jest stosowany jako składnik stopów stali szybkotnących (stopy zawierające 45 ÷ 50% kobaltu i 25 ÷ 30% chromu), stopów magnetycznie twardych, twardych stopów narzędziowych itp. Związki kobaltu są stosowane do produkcji farb (błękit Thenarda, smalta) i lakierów w przemysłach szklarskim i ceramicznym. W warunkach przemysłowych występuje głównie narażenie na kobalt w postaci dymów i pyłów. Szacuje się, że obecnie w Polsce narażonych na kobalt i jego związki jest około 5000 osób. W 2000 r. w jednym z zakładów województwa śląskiego stwierdzono narażenie pracowników na ponadnormatywne stężenie kobaltu metalicznego (dymy, pyły). Narażonych było 20 osób zatrudnionych przy produkcji gotowych wyrobów metalowych (z wyjątkiem maszyn i innych urządzeń). Natomiast wg danych Głównej Inspekcji Sanitarnej w 2007 r. nie było przekroczeń wartości NDS (0,05 mg/m3) kobaltu metalicznego (dymy i pyły). Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć kobaltem u ludzi. Zatrucia przewlekłe niezawodowe spowodowane spożyciem dużej ilości piwa z dodatkiem siarczanu kobaltu spowodowały uszkodzenie mięśnia sercowego, zwiększenie liczby czerwonych krwinek (czerwienica) i zaburzenie metabolizmu tarczycy. U ludzi narażonych na kobalt drogą inhalacyjną i dermalną obserwowano alergię i słabe działanie drażniące. Układem krytycznym działania kobaltu jest układ oddechowy, w którym najczęściej obserwowano zmiany o typie astmatycznym i podłożu alergicznym, a także zmiany czynnościowe polegające na upośledzeniu wydolności oddechowej. Na podstawie wyników badań toksyczności ostrej kobalt i jego związki nieorganiczne można zaklasyfikować do czynników toksycznych lub szkodliwych. W badaniach przewlekłych główne skutki działania toksycznego kobaltu dotyczyły zmian zapalnych i martwiczych nabłonka dróg oddechowych, a w większych dawkach zmian zwłóknieniowych dolnych partii układu oddechowego. W badaniach wpływu na rozrodczość kobalt wykazywał działanie fetotoksyczne. Badania NTP wykazały działanie rakotwórcze siarczanu kobaltu u myszy i szczurów. IARC zaklasyfikował kobalt i jego związki nieorganiczne do grupy 2B (związki o udowodnionym działaniu rakotwórczym na zwierzęta i nieudowodnionym działaniu rakotwórczym na ludzi). Do ustalenia wartości NDS dla kobaltu i jego związków nieorganicznych za skutek krytyczny przyjęto zmiany astmatyczne w układzie oddechowym o podłożu alergicznym, które manifestowały się kaszlem, świszczącym oddechem oraz spłyceniem oddechu. Zespół tych objawów określa się jako „hard metal asthma”. Większość opisywanych przypadków astmy było związanych z narażeniem na kobalt w przemyśle metali ciężkich. U kilku pacjentów z objawami “hard metal asthma” w badaniach immunolo-gicznych wykazano obecność specyficznych przeciwciał i/lub pozytywny wynik testu transformacji limfocytów. Badania te dotyczyły osób narażonych zarówno na sole kobaltu, jak i metal oraz proszek metalu. Narażenie na pyły kobaltu u pracowników przemysłu metali ciężkich (produkcja metali) oraz w rafine-riach (produkcja kobaltu) wywoływało zmiany czynnościowe w drogach oddechowych polegające na upośledzeniu wydolności oddechowej. Działanie kobaltu na inne narządy i układy, a w szczególności na skórę, układ krążenia, krew oraz tarczycę występowało po znacznie większych dawkach lub stężeniach związku. Z tego względu skutki te pominięto przy ustalaniu wartości dopuszczalnego stężenia kobaltu w powietrzu na stanowiskach pracy. Za postawę do wyznaczenia wartości NDS kobaltu i jego związków nieorganicznych przyjęto wyniki badania przeprowadzonego w Finlandii wśród pracowników zatrudnionych przy produkcji kobaltu. Na podstawie wyników badań stwierdzono, że ryzyko astmy wzrastało 5-krotnie u pracowników narażonych na siarczan kobaltu o stężeniu 0,1 mg/m3 (w przeliczeniu na kobalt). U pracowni-ków narażonych na aerozol siarczanu kobaltu o stężeniach < 0,1 mg/m3 przez 6 ÷ 8 lat nie wykazano wzrostu ryzyka przewlekłego zapalenia oskrzeli.Stężenie kobaltu wynoszące 0,1 mg/m3 przyjęto za wartość LOAEL i przy zastosowaniu odpowiednich współczynników niepewności zaproponowano wartość NDS równą 0,02 mg/m3 zarówno dla kobaltu, jak i jego związków nieorganicznych z uwzględnieniem narażenia na pyły zawierające kobalt. Wartość normatywu higienicznego na tym samym poziomie przyjęto w ACGIH i w Holandii. Mniejszą wartość normatywną kobaltu wynoszącą 0,01 mg/m3 przyjęto w Danii. W Niemczech, ze względu na udowodnione działanie rakotwórcze kobaltu u zwierząt doświadczalnych, nie ustalono dla kobaltu wartości MAK (grupa 3A). Nie było także wystarczających danych do zaproponowania wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) kobaltu. Zaproponowano natomiast przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla stężeń kobaltu w moczu 15 g/l moczu (g/g kreatyniny) i we krwi 1 g/l. Przyjęto także, że normatyw należy oznaczyć literami: ,,I” – sub-stancja o działaniu drażniącym; „A” – substancja o działaniu uczulającym, „Ft” – substancja działa toksycznie na płód oraz „Rakotw.” – kategorię rakotwórczości związków należy ustalić na podstawie wykazu substancji niebezpiecznych wraz z ich klasyfikacją i oznakowaniem, np. dichlorek kobaltu – Rakotw. Kat. 2; R49; siarczan(VI) kobaltu – Rakotw. Kat. 2; R49.
In most compounds, cobalt (Co) occurs at level II or level III of its value. Co compounds (III) react with different acids, producing salts, whereas the reactivity of Co II is less pronounced. This element, present in living organisms, is a microelement and is a component of vitamin B12. It is an essential component of alloys used in high-speed-cutting steel tools (alloys containing 45–50% of Co and 25–30 % of chromium), hard magnets, hard tools and others. Co compounds are used in the production of paints (Thénard blue, smalt) and lacquers in the glass-making and ceramic industries. In industrial conditions, fumes and dusts are the major sources of exposure. It is estimated that in Poland about 5000 persons are exposed to cobalt and its compounds. In 2000, an excessive exposure of workers to metallic Co (fumes and dusts) was found in a plant in the Silesian voivodeship. Twen-ty persons involved in the manufacture of ready-made metallic products (except for machines and other devices) were exposed; however, according to 2007 data provided by the Chief Sanitary In-spectorate, Co (fumes and dusts) maximum admissible concentrations (MAC = 0.05 mg/m3) were not exceeded. In the literature there are no data on Co acute intoxications in humans. Non-occupational chronic intoxications due to consumption of large quantities of cobalt sulfate fortified beer induced myocar-dial lesion, enhanced red blood cell count (polycythemia) and disturbed thyroid metabolism. In persons exposed to cobalt via inhalation and absorption through the skin, allergies and irritations are observed. The respiratory tract is its major target organ, hence asthma- and allergy-like lesions, as well as functional changes, involving the impairment of lung functions are most frequent. On the basis of the results of acute toxicity studies, cobalt and its inorganic compounds can be classi-fied as toxic or hazardous agents. Studies of chronic effects showed that inflammatory and necrotic lesions of respiratory epithelium are the main consequences of cobalt toxicity, and fibrosis of the lower parts of the respiratory tract can also be induced in the case of higher doses. The National Toxicology Program studies have evidenced carcinogenic effect of cobalt sulfate and the Internation-al Agency for Research on Cancer (IARC) has categorized cobalt and its compounds as group 2B (sufficient evidence of carcinogenicity in experimental animals and inadequate evidence in humans). To determine MAC values for cobalt and its inorganic compounds, allergic asthma lesions mani-fested by wheezing cough and shortness of breath were adopted as a critical effect. The syndrome comprising these manifestations is termed hard metal asthma. Most reported asthma cases were linked with exposure to cobalt in the heavy metal industry. In several cobalt-exposed patients with symptoms of hard metal asthma, immunological tests revealed the presence of specific antibodies and/or positive lymphocyte transformation test. Those persons had been exposed to cobalt salts, metallic cobalt and metallic powder. Exposure to cobalt dust in workers employed in the hard metal industry (metal production) and refineries (cobalt production) induced changes in respiratory functions, involving the impairment of 94 respiration efficiency. Co effects on other organs and systems, in general, and on the skin, circulatory system and thyroid gland, in particular, have been observed after higher doses or higher compound concentrations. That is why these effects have been disregarded in setting MAC values in the workstation ambient air. The results of a Finnish study carried out in workers engaged in cobalt production have been adopted as a basis for setting MAC values for cobalt and its inorganic compounds. These find-ings evidenced a five-fold increase in asthma incidence in workers exposed to Co sulfate at a concentration of 0.1 mg/m3 (converted into cobalt). In workers exposed to cobalt sulfate aerosol at a concentration of < 0.1 mg/m3 for 6 – 8 years no enhanced risk of chronic bronchitis has been found. Cobalt concentration of 0.1 mg/m3 has been adopted as the value of the lowest observed adverse effect level (LOAEL) and applying relevant uncertainty coefficients MAC value = 0.02 has been pro-posed for cobalt and its inorganic compounds, taking account of exposure to cobalt-containing dusts. The hygiene standard value at the same level was adopted by the American Conference of Govern-mental Industrial Hygiene (ACGIH) and in The Netherlands. A lower value (0.01 mg/m3) was adopted in Denmark. In Germany, the MAC value for cobalt has not been set on account of its suffi-ciently evidenced carcinogenicity in experimental animals (group 3A). Moreover, the data were in-sufficient to propose a short-term MAC (STMAC) value for cobalt. However, it has been suggested to adopt the value of admissible concentration in biological material (ACB) for Co concentration in urine, 15 μg/l urine (μg/g creatinine) and in blood, 1μg/l. The following standard denotations have been adopted: “I” – irritating substance; “A” – sensitizing substance; “Ft” – fetus toxic substance; and “Carcinogenic” – the category of carcinogenicity of compounds should be determined on the basis of the list of hazardous substances along with its classification and denotation, e.g., cobalt dich-loride – Carcinogenic, Cat. 2; R49; cobalt sulfate (VI) – Carcinogenic, Cat. 2; R49.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 47-94
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pirydyna
Pyridine
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137629.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pirydyna
toksyczność
narażenie zawodowe
NDS
pyridine
toxicity
occupational exposure
MAC
Opis:
Pirydyna jest stosowana jako rozpuszczalnik: farb, gumy, produktów farmaceutycznych, żywic poliwęglanowych i środków impregnacyjnych do tkanin. Duże ilości pirydyny Są stosowane jako związek wyjściowy do produkcji: pochodnych pirydyny, piperydyny, pestycydów, leków i innych produktów. Zawodowe narażenie na pirydynę może występować podczas: jej produkcji, dalszego jej przerobu i dystrybucji, a także uwalniania związku jako produktu rozkładu węgla czy smoły węglowej oraz produktów zawierających pirydynę. Stężenia pirydyny w powietrzu środowiska pracy w drugiej połowie XX w. kształtowały się od 0,002 do około 20 mg/m. Według danych Głównego Inspektora Sanitarnego łączna liczba pracowników narażonych Polsce na pirydynę o stężeniach w zakresie od > 0,1 do 0,5 wartości NUS (tj. 5 mg/m wynosiła 31 osób w 2010 r. oraz 46 osób w 2011 r. Nie było pracowników narażonych na pirydynę o stężeniach przekraczających 0,5 wartości NDS. Dawkę śmiertelną pirydyny dla człowieka oszacowano na 0,5 ÷ 5,0 mg/kg m.c. W opisanych przypadkach zatruć ostrych pirydyną obserwowano po zatruciu drogą pokarmową: nudności, zawroty głowy, ból brzucha i przekrwienie bierne płuc. Po zatruciu inhalacyjnym pirydyną objawy wskazywały na działanie związku na ośrodkowy układ nerwowy i charakteryzowały się zaburzeniami mowy oraz rozległymi cechami niedotlenienia kory mózgu. Opisano także przypadki przewlekłego zatrucia pirydyną pracowników zatrudnionych w zakładach chemicznych, w których stężenia pirydyny w powietrzu wynosiły około 19 ÷ 42 mg/m Objawami zatrucia były: bóle i zawroty głowy, nerwowość, bezsenność, czasami nudności i wymioty. Na podstawie wyników nielicznych badań epidemiologicznych nie stwierdzono wzrostu umieralności u osób narażonych na pirydynę w latach 1961- -1983 w trzech zakładach w Wielkiej Brytanii. Na podstawie wyników badań toksyczności ostrej na zwierzętach doświadczalnych (szczurach, my szach, świnkach morskich, królikach i psach) wykazano, że pirydyna należy do związków szkodliwych (Xn). Związek ten wykazywał słabe działanie drażniące na skórę królików i nie powodował uczulenia skóry w badaniach na świnkach morskich. W badaniach podprzewlekłych i przewlekłych, w których pirydynę podawano zwierzętom w różnych dawkach drogą pokarmową (p.o. lub w wodzie do picia), u zwierząt obserwowano: zmniejszenie przyrostu masy ciała, uszkodzenie wątroby i nerek oraz wpływ związku na układ rozrodczy. Pirydyna nie wykazała działania mutagennego. Na podstawie wyników badań na szczurach i myszach w programie NTP uznano, że dowód działania rakotwórczego pirydyny na szczury jest niejedno znaczny, natomiast istnieje wyraźny dowód działania rakotwórczego związku na myszy. W IARC zaliczono pirydynę do grupy 3., tj. związków nie- klasyfikowanych pod względem rakotwórczości dla ludzi. Za krytyczne skutki u ludzi po powtarzanym narażeniu na pirydynę uznano działanie depresyjne związku na ośrodkowy układ nerwowy (OUN) oraz skutki działania na wątrobę i nerki, będące najwcześniejszymi objawami toksycznego działania związku na gryzonie. Do wyprowadzenia wartości najwyższego dopuszczalnego stężenia (NDS) pirydyny przyjęto dane dotyczące skutków przewlekłego narażenia myszy i szczurów na związek drogą pokarmową. Wartości NOAEL/LOAEL dla podprzewlekłych i przewlekłych doświadczeń na gryzoniach mieszczą się w zakresie dawek od <7 do 50 mg/kg m.c. Na podstawie wyników 2-letnich badań, w których szczurom szczepu F344/N lub Wistar podawano pirydynę z wodą do picia, wykazano, że po najmniejszych podanych dawkach (7 lub 8 mg/kg/dzień) u części zwierząt wystąpiło uszkodzenie wątroby. Dawkę 7 mg/kg m.c. przyjęto więc za wartość ŁOA EL stanowiącą podstawą do wyprowadzenia wartości NDS pirydyny.
Pyridine, a cołorless liquid with a characteristic un pleasarit odor, has been categorized as a highly flam mable and harmful substance. It exerts harmful effects if inhaled, swalowed or absorbed through the skin. Pyridine is used as a solvent in paints, rubber, pharmaceuticals, polycarbonate resins and textile fabric impregnating agents. Its large quantities are applied as a precursor in the production of pyridine deriatives, piperidine, pesticides, phannaceuticals and other products. Occupational exposure to pyridine may occur during its production, further processing and distribution, as well as during the process of pyridine release, yield ing coal and tar breakdown products or pyridine containing products. In the second half of the 2Oth century pyridine air concentration in the occupational environment ranged from 0.002 to about 20 mg/m In Poland, according to the 2011 data of the Chief Sanitary Inspectorate, 31 workers in 2010 and 46 workers in 2011 were occupationally exposed to pyridine at concentrations from > 0.1 to 0.5 of the maximum admissible concentration (MAC) value, equal 5 mg/m No workers were exposed to pyridine at concentration exceeding the 0.5 MAC value. The human lethal dose of pyridine has been estimated at 0.5 - 5.0 mg/kg of body weight. In the reported cases of acute pyridine intoxication the following symptoms and signs were observed after ingestion: nausea, vertigo, abdominal pain and lung congestion and after inhalation: effects on the central nervous system (CNS) characterized by speech disorders and extensive cerebral cortex hypoxia. Chronic pyridine intoxication of workers employed in chemical plants, where its air concentrations reached 19 - 42 mg/m have also been reported. In those cases, such symptoms as headaches, vertigo, nervousness, insomnia, occasional nausea and vomiting were found. Based on the results of rather rare epidemiological studies no excess mortality among workers exposed to pyridine in three British plants was found in 1961—1983. The studies of acute toxic effect of pyridine carried out on laboratory animals (rats, mice, guinea pigs, rabbits and dogs) have evidenced that pyridine is a harmful (Xn) compound. Pyridine induces mild irritation effects on the rabbit skin, but it does not generate dermal allergy in guinea pigs. The studies of sub-chronic and chronic effects of pyridine, administered (per os or in drinking water) in different doses have revealed decreased body mass gain, liver and kidney damage and reproductive disorders in laboratory animals. Pyridine does not show mutagenic effects. Based on the results of studies on rats and mice, performed under the NTP program, the absence of clear-cut evidence that pyridine exerts carcinogenic effect on rats has been claimed, however, carcinogenic effect of pyridine on mice bas been evidenced. The International Agency for Research on cancer has categorized pyridine with respect to its potential carcinogenic risk to group 3 as not classifiable as to its car cinogenicity to humans. CNS depression observed iii humans after repeated exposure to pyridine, as well as the damage to liver and kidneys, the earliest symptoms of its toxic effect on rodents, are recognized as critical effects of tbis compound. The data on effects of chronic exposure of mice and rats to pyridine via ingestion served as grounds for estimating its MAC value. The values of no ob served adverse effect Ievel / the lowest observed adverse effect level (NOAEŁ/LOAEŁ) for sub chronic and chronic experiments on rodents fall within the range of > 7-50 mg/kg of body weight. The results of a two-year study on F344/N or Wistar rats administered pyridine in drinking water showed that the liver damage had occurred in a part of the study animals after the lowest doses (7 or 8 mg/kg/day). Therefore, a dose of 7 mg/kg of body weight was finally adopted as the LOAEŁ value, being the basis for setting the MAC value of pyridine. The LOAEŁ value of 7 mg/kg of body weight for pyridine corresponds with pyridine air concentration of 49 mg/m (15 ppm), providing that an adult person of 70 kg body weight inhales 10 m of the air during an 8-hour work shift. After applying coefficients of uncertainty (total value, 8), the MAC value for pyridine was estimated at 6.13 mg/m In the EU, the OEL value for pyridine bas not been set, however, maintaining its air concentration be bw 5 ppm (16 mg/m3 is recommended. The established pyridine MAC value of 6.13 mg/m3 not only meets this criterion but it is also close to the MAC value (5 mg/m for pyridine binding in Poland. The authors of the documentation have suggested to keep the MAC value for pyridine at 5 mg/m since according to the Chief Sanitary Inspectorate data for 2010-2011 in Po there were no workers exposed to pyridine at concentrations exceeding 0.5 of the MAC value (2.5 mg/m The compound was la belied with „Sk” indicating dermal absorption of the substance. There are no grounds for defining the maximum admissible short-term exposure level (STEL) for this compound. Therefore, it has been suggested to eliminate this value from the list of MAC values. The adherence to MAC value for pyridine of 5 mg/m should protect workers against harmful effects of pyridine on the CNS observed after exposure to its concentrations of 19—42 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 59-82
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pary rtęci i jej związki nieorganiczne
Mercury
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138010.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
rtęć
toksyczność
narażenie zawodowe
NDS
mercury
toxicity
occupational exposure
MAC
Opis:
Rtęć jest metalem, który w temperaturze pokojowej występuje w stanie ciekłym. W przyrodzie występuje głównie w postaci cynobru (siarczek rtęciowy, HgS) oraz jako rtęć rodzima w postaci kropel lub krystalicznego amalgamatu srebra. Światowa produkcja rtęci w połowie lat 70. XX w. osiągnęła poziom około 10 000 t rocznie. Z uwagi na problem zanieczyszczenia środowiska w końcu lat 80. zużycie rtęci gwałtownie zmniejszyło się. Niektóre państwa (USA) wstrzymały całkowicie wydobycie rtęci. W ostatnich latach światowa produkcja ustabilizowała się na poziomie około 2500 t rocznie. Rtęć jest stosowana przy produkcji baterii alkalicznych, lamp fluorescencyjnych, lamp rtęciowych w przemyśle chloroalkalicznym (elektrolityczne otrzymywanie chloru i wodorotlenku sodowego) oraz chemicznym (produkcja farb, katalizator w procesach chemicznych). Rtęć jest stosowana także w urządzeniach kontrolno-pomiarowych (termometry, zawory ciśnieniowe, przepływomierze), w preparatach dentystycznych (amalgamaty) oraz w niewielkich ilościach w laboratoriach. Narażenie zawodowe na pary rtęci ma miejsce głównie przy wydobywaniu i przerobie rudy cynobrowej, a także przy otrzymywaniu chloru i ługu metodami elektrolitycznymi, przy produkcji stopów metali, barwników, fungicydów oraz przy produkcji i obsłudze takich przyrządów wypełnionych rtęcią, jak np.: przepływomierze, różnego rodzaju aparatura pomiarowa, termometry, barometry, prostowniki. Narażeni na rtęć są również pracownicy laboratoriów, pracowni naukowych, gabinetów dentystycznych i zakładów fotograficznych. W zakładach przemysłu chloroalkalicznego w różnych państwach stężenie rtęci w powietrzu wynosiło < 10 ÷ 430 mg/m3. Obserwowane stężenia rtęci w moczu u pracowników tych zakładów wynosiły od 0 do około 750 mg/l. W warunkach przemysłowych narażenie dotyczy wyłącznie narażenia drogą inhalacyjną na pary rtęci. Inne nieorganiczne związki rtęci praktycznie nie stwarzają ryzyka przy narażeniu inhalacyjnym. Według danych stacji sanitarno-epidemiologicznych w 2007 r. na pary rtęci powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. 0,025 mg/m3 było narażonych 48 pracowników przy produkcji wyrobów chemicznych. Dla nieorganicznych związków rtęci przekroczeń wartości NDS (0,05 mg/m3) nie zanotowano. Narządem krytycznym u ludzi w zatruciach ostrych parami rtęci są płuca. W przypadku narażenia zawodowego postać ostra występuje rzadko. Po narażeniu na pary rtęci o dużym stężeniu obserwowano wiele skutków ze strony układu nerwowego, m.in.: drżenia, chwiejność emocjonalną, bezsenność, zaburzenia pamięci, polineuropatie, zaburzenia w funkcjach poznawczych i motorycznych oraz zaburzenia widzenia. W przewlekłym narażeniu ludzi na rtęć i jej związki nieorganiczne obserwowano głównie skutki neurotoksyczne i nefrotoksyczne. Po narażeniu szczurów na pary rtęci o stężeniu 27 mg/m3 przez 2 h padło 20 z 30 zwierząt. Wartość DL50 dla szczurów po dożołądkowym podaniu chlorku rtęci(II) wynosi 25,9 mg Hg/kg. Na tej podstawie, zgodnie z klasyfikacją UE, rtęć i jej związki nieorganiczne można zaliczyć do związków toksycznych. W eksperymentach podprzewlekłych i przewlekłych nieorganiczne związki rtęci wykazywały głównie działanie nefrotoksyczne, zależnie od wielkości dawki. W ocenie działania rakotwórczego IARC zaklasyfikowała rtęć metaliczną i jej związki nieorganiczne do grupy 3., czyli związków nieklasyfikowanych pod względem działania rakotwórczego dla ludzi. W licznych doniesieniach wykazano, że chlorek rtęci(II) działał mutagennie, natomiast pary rtęci nie wykazywały takiego działania. Mimo że w przypadku narażenia ludzi dane na temat wpływu rtęci metalicznej i jej nieorganicznych związków na rozrodczość są niejednoznaczne, to jej wpływ na zwierzęta jest udowodniony. Ponadto, z uwagi na fakt, że rtęć przechodzi przez barierę łożyska, istnieją zalecenia, aby u kobiet w wieku rozrodczym maksymalnie ograniczyć narażenie na rtęć i jej związki. O ile większość danych uzyskanych na podstawie wyników badań przeprowadzonych na zwierzętach dotyczy badań nieorganicznych związków rtęci, zwłaszcza chlorku rtęci(II), to dane z badań epidemiologicznych dotyczą głównie narażenia zawodowego na pary rtęci. Nadmierne narażenie zawodowe na rtęć metaliczną (pary) i jej związki powoduje wystąpienie objawów psychiatrycznych, behawioralnych i neurologicznych i wiąże się również z uszkodzeniem nerek. Tak więc, krytycznymi narządami w przypadku chronicznego narażenia na rtęć i jej związki nieorganiczne są ośrodkowy układ nerwowy i nerki. Ustalenie zatem wartości NDS powinno dotyczyć takiej wartości stężeń, poniżej której nie pojawią się subkliniczne zmiany. Najwcześniejszymi obserwowanymi zmianami są zaburzenia neurobehawioralne pojawiające się w wyniku narażenia na pary rtęci, dlatego proponowana wartość NDS wyprowadzona będzie dla par rtęci, a otrzymany normatyw powinien zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Za podstawę ustalenia wartości NDS dla par rtęci i jej związków nieorganicznych przyjęto wyniki badań epidemiologicznych dotyczących wczesnych neurotoksycznych skutków wywieranych przez rtęć. Większość wyników tych badań wykazała większą korelację stanu zdrowia badanych osób z wynikami monitoringu biologicznego (stężenia Hg w moczu i we krwi) niż monitoringu powietrza, dlatego proponowane normatywy higieniczne są wyprowadzane na podstawie wielkości stężenia rtęci w moczu. Większość autorów badań epidemiologicznych przyjmuje wartość 35 μg/g kreatyniny w moczu za stężenie progowe, powyżej którego zaczynają się ujawniać szkodliwe skutki ze strony ośrodkowego układu nerwowego i nerek. Dane z metaanaliz wskazują jednak na możliwość toksycznego działania rtęci na zachowania człowieka już po narażeniu na stężenia rtęci w moczu w zakresie 20 ÷ 30 μg/g kreatyniny. W ocenie autorów jednej z metaanaliz ludzie narażeni na rtęć uzyskują gorsze wyniki z niektórych testów neurobehawioralnych, porównywalne z wynikami osiąganymi przez ludzi o 5 ÷ 20 lat starszych. Na podstawie argumentacji uzasadnienia normatywów Unii Europejskiej oraz wyników meta analiz uważamy, że należy przyjąć poziom 30 μg Hg/g kreatyniny za poziom zabezpieczający przed wystąpieniem zaburzeń behawioralnych. Wartość ta jest proponowaną wartością dopuszczalnego stężenia w materiale biologicznym (DSB). Ekstrapolując wyniki monitoringu biologicznego na stężenie rtęci w powietrzu, zalecanemu stężeniu rtęci w moczu (30 μg/g kreatyniny) będzie odpowiadało stężenie rtęci w powietrzu wynoszące 0,02 mg/m3. Wartość tę proponujemy przyjąć za wartość NDS. Zaproponowane wartości normatywne (NDS – 0,020 mg/m3 i DSB – 30 μg/g kreatyniny) są zgodne z normatywami przyjętymi w Unii Europejskiej. Tak zaproponowane normatywy higieniczne powinny zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) rtęci i jej związków.
Mercury (Hg) is the only common metal which is liquid at conventional room temperature. It is found in nature mostly as cinnabar (mercuric sulfide, Hg5) and also as native mercury in the form of drops or silver crystalline amalgam. In the mid 1970s world production of mercury was around 10 000 tonnes per year. By the end of the 1980s the use of mercury had rapidly decreased because of its adverse environmental effects. In recent years its annual world production has stabilized at the level of about 2500 tonnes. Mercury is used in the production of alkaline batteries and fluorescent lamps, mercuric lamps in the chlor-alkali (electrolytic production of chloride and sodium hydroxide) and chemical (paint manufacturing, catalysts in chemical processes) industries. It is also used in control and measurement devices (thermometers, manometers, pressure valves), in dental preparations (amalgam) and in laboratories. Mercury concentrations in chlor-alkali plants have recently ranged, depending on the country, from < 10 to 430 μg/m3, and concentrations in the urine of the employees of those plants ranged from 0 to 750 μg/l. In industrial plants, inhalation is the only way of workers’ exposure to Hg vapors. Inhalation exposure to other Hg inorganic compounds does not practically entail any risk. In the cases of acute Hg intoxication, the lungs are the most critical organ. In occupational exposure the acute form of contamination with this metal is rather rare. Nevertheless, it has been found that high concentrations of Hg vapors induce various harmful effects on the nervous system, e.g., tremor, emotional liability, insomnia, memory disturbances, polyneuropathies, disturbances of cognitive and motor functions and vision disorders, whereas chronic exposure to mercury and its inorganic compounds exerts neurotoxic and nephrotoxic effects. On the basis of the DL50 value for rats (25.7 mg/kg) and in accordance with the European Union (EU) classification, mercury and its inorganic compounds can be categorized as toxic compounds. On the basis of the available evidence, the International Agency for Research on Cancer categorized metallic mercury and its inorganic compounds as group 3, not classifiable as to its carcinogenity to humans. Numerous reports have indicated mutagenic effects of mercuric chloride (II), but not of Hg vapors. Although data on the effects of metallic mercury and its inorganic compounds on fertility in persons exposed to metallic mercury are contradictory, their adverse effects have been evidenced in animal studies. Bearing in mind that mercury penetrates the placental barrier it has been recommended to reduce exposure to mercury and its compounds to a minimum among women of child-bearing age. Most data based on animal studies apply to inorganic mercury compounds, especially to mercuric chloride, whereas data obtained from epidemiological studies mostly apply to occupational exposure to Hg vapors. Excessive occupational exposure to metallic mercury (vapors) and its compounds leads to psychiatric, behavioral and neurological symptoms and also to kidney damage. Thus, the neurological system and kidneys are major targets in chronic exposure to mercury and its inorganic compounds. Therefore, when setting MAC values, researchers should consider concentrations beyond which subclinical changes are not observed. Behavioral disturbances are the earliest consequences of exposure to Hg vapors, therefore the proposed MAC value should be set for Hg vapors and the obtained standard value should protect workers against harmful effects of both vapors of mercury and its inorganic compounds. The results of epidemiological studies on early mercury-induced neurotoxic effects have been taken as the basis for setting MAC values for Hg vapors and inorganic compounds. Most of those results showed that the health condition of the persons under study were more correlated with the results of biologic monitoring (urine and blood Hg concentrations) than with those of air monitoring. That is why the proposed hygiene standards have been deduced from Hg concentrations in urine. Most authors of epidemiological studies adopt the value of 35 μg/g creatinine in urine as the threshold concentration; at higher concentrations adverse effects on the peripheral nervous system and on the kidneys have been observed. Meta analyses of epidemiological studies reveal potential toxic effects of mercury on human behavior already after exposure to urinal Hg concentration within the range of 20 ÷ 30 μg/g creatinine. In our opinion, on the basis of the arguments used to justify the adoption of EU standards and the results of meta analyses, the level of 30 μg Hg/g creatinine in urine should be set as the level protecting against the development of behavioral disturbances. This value is proposed to be adopted as a biological limit value (BLV). Extrapolation from biological monitoring values to airborne exposure to mercury show that Hg concentration in the air at the level of 0.02 mg/m3 would correspond with the recommended Hg concentration in urine (30 μg/g creatinine). We propose to adopt this level as the MAC value. The proposed standard values (MAC, 0.020 mg/m3 and BLV 30 μg/g creatinine) are in agreement with norms adopted by the European Union. The proposed hygienic standards should protect workers against adverse effects of both mercury vapors and inorganic compounds. Setting the STEL concentration of mercury and its compounds is not warranted.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 3 (65); 85-149
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan
Nitroethane
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958174.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Stosowany jest jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako: rozpuszczalnik estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Według danych Stacji Sanitarno Epidemiologicznej w Bydgoszczy w 2007 r. nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach, które by przekraczały obowią-zujące wartości najwyższego dopuszczalnego stężenia (NDS) 30 mg/m3. Nitroetan może wchłaniać się do organizmu w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3 roku życia, które przypad-kowo wypiły zmywacz do sztucznych paznokci zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica i czasem wymioty, a poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Brak jest danych dotyczących zatruć przewlekłych nitroetanem u ludzi oraz danych epidemiologicznych. Na podstawie wyników badań toksyczności ostrej zaklasyfikowano nitroetan do związków szkodli-wych. Nie wykazano działania drażniącego związku na oczy i skórę oraz jego działania uczulającego.W badaniach podprzewlekłych (narażenie trwało 4 lub 90 dni) i przewlekłych (narażenie trwało 2 lata) przeprowadzonych na szczurach i myszach w zakresie stężeń 310 ÷ 12 400 mg/m3 nitroetanu stwier-dzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenie: wątroby, śledziony, ślinianek oraz małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Po przewlekłym narażeniu szczurów (2 lata) na nitroetan o stężeniu 620 mg/m3 (LOAEL) stwierdzono niewielkie zmniejszenie masy ciała zwierząt narażanych oraz brak zmian w wynikach badań hemato-logicznych, biochemicznych i histopatologicznych. Stosując wartość LOAEL równą 620 mg/m3, a także odpowiednie współczynniki niepewności, zapro-ponowano przyjęcie stężenia 75 mg/m3 nitroetanu za wartość NDS związku. Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu. Zapropo-nowano, ze względu na działanie methemoglobinotwórcze związku, przyjęcie dla nitroetanu wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHb we krwi, która została ustalona dla wszystkich substancji methemoglobinotwórczych.
Nitroethane is a colorless oily liquid with a mildly fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), as well as a solvent or a dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur in the processes of its production and processing. According to data provided by the Sanitary and Epidemiological Station in Bydgoszcz, Poland, as of 2007 there had been no cases in the Polish industryof workers’ exposure to this compound that would exceed the maximum admissible concentration (MAC) value of 30 mg/m3. Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. 170 The discussed cases of nitroethane acute poisoning applied to children under three years of age caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane. A few hours after ingestion cyanosis and sporadic vomiting were observed in children and the methemoglobin level reached 40–50%. There are no data on chronic nitroethane poisoning in humans or data obtained from epidemio-logical studies. On the basis of the results of acute toxicity studies, nitroethane has been classified as a hazardous com-pounds. However, there has been no evidence of its eye and dermal irritation or allergic effects. The studies of sub-chronic (exposure lasting from 4 to 90 days) and chronic (2-year) exposure to nitroethane, carried out on rats and mice (concentration range, 310–12 400 mg/m3), revealed the methemoglobinogenic effect, as well as minor damage to the liver, spleen, salivary gland and nasal turbinates caused by nitroethane. Niroethane has shown neither mutagenic nor carconogenic effects. There has been no evidence of its influence on fertility either. After chronic (2-year) exposure of rats to nitroethane at 620 mg/m3 (the lowest observed adverse effect level – LOAEL), there was a slight change in the body mass of exposed animals, but there were no anomalies in hematological, biochemical and histopathological examinations. By applying the LOAEL value of 620 mg/m3 and relevant coefficients of uncertainty, the value of 75 mg/m3 has been suggested to be adoptedas the MAC value for this compound. There are no grounds for setting the value of short-term exposure limit (STEL) for nitroethane. On account of its methemoglobinogenic effect, 2% Met-Hb has been suggested to beadopted as the value of the biological exposure index (BEI), a value already adopted for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 155-170
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akrylamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Acrylamide. Documentation of suggested occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958185.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
akrylamid
toksyczność
narażenie zawodowe
NDS
acrylamide
toxicity
occupational exposure
MAC
Opis:
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), występuje też w dymie papierosowym. Akrylamid jest sklasyfikowany jako substancja: toksyczna, stwarzająca poważne zagrożenie zdrowia w następstwie długotrwałego narażenia przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Akrylamid jest mutagenem kategorii 2. (1B) i związkiem rakotwórczym kategorii 2. (1B), działa szkodliwie na rozrodczość, a także drażniąco na oczy i skórę, może wywoływać reakcję uczuleniową skóry.Produkcja akrylamidu jest wielkotonażowa. Stosowany jest głównie do: syntezy poliakrylamidów stosowanych w procesach oczyszczania ścieków, produkcji papieru, przerobie rud, wytwarzaniu polimerów winylowych oraz jako szczeliwo podczas budowy zapór wodnych i tuneli. Żel poliakrylamidowy wykorzystuje się w procesie elektroforezy (PAGE) powszechnie stosowanej w wielu laboratoriach. Zawodowe narażenie na akrylamid może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także stosowania związku w pracach budowlanych czy montażowych (np.: budowa tuneli, naprawa kanalizacji). Narażenie na akrylamid w Polsce występuje głównie w: zakładach chemicznych, farmaceutycznych oraz laboratoriach instytutów badawczych i uczelni wyższych.W Polsce w latach 2005-2010 ponad 2000 osób było narażonych na akrylamid (2525 osób w 2010 r.), z czego większość stanowiły kobiety. W latach 2011-2012 (wg danych GIS) nie było pracowników narażonych na stężenia akrylamidu w powietrzu, powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. powyżej 0,01 mg/m³. Akrylamid wykazuje działanie neurotoksyczne. Kliniczny obraz ostrego i przewlekłego zatrucia u ludzi jest podobny, a dominującymi są takie objawy neuropatii obwodowej, jak: utrata czucia, parestezje (drętwienie/mrowienie dłoni i stóp), osłabienie mięśniowe oraz osłabienie odruchów ścięgnistych. Mogą ponadto wystąpić drżenia rąk i chwiejny chód, zmniejszenie wrażliwości na światło i zdolność rozróżniania barw. Objawy neuropatii obwodowej obserwowano istotnie częściej u pracowników, gdy stężenia akrylamidu na stanowiskach pracy wynosiły powyżej 0,3 mg/m³. W badaniach monitoringu biologicznego (addukty akrylamid z hemoglobiną, AA-Hb) pracowników narażonych na akrylamid ustalono wartość NOAEL dla objawów drętwienia/mrowienia rąk/stóp na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu 0,1 mg/m³. U osób narażonych na akrylamid obserwowano także zapalenie skóry, objawiające się jej łuszczeniem, głównie na dłoniach. Na podstawie wyników badań toksyczności ostrej akrylamidu na zwierzętach wykazano, niezależnie od drogi narażenia, wystąpienie objawów neurotoksyczności. W dostępnym piśmiennictwie nie ma informacji o długoterminowych badaniach inhalacyjnych na zwierzętach. W badaniach podprzewlekłych i przewlekłych (po narażeniu drogą pokarmową lub dootrzewnową) obserwowano głównie neurotoksyczne działanie związku. Klinicznymi objawami narażenia zwierząt na akrylamid były zaburzenia koordynacji ruchowej i chodu oraz osłabienie kończyn tylnych prowadzące do paraliżu. U zwierząt w badaniach histopatologicznych stwierdzano głównie zwyrodnienie aksonów i komórek Schwanna w nerwach obwodowych i w rdzeniu kręgowym. Dla szczurów ustalono wartość NOAEL dla chronicznej neurotoksyczności na poziomie 0,5 mg/kg mc./ dzień. Akrylamid powodował zmiany patologiczne w narządach rozrodczych samców (zwyrodnienie nabłonka rozrodczego w jądrach i przewodach nasiennych, złuszczanie komórek rozrodczych w najądrzach oraz atrofię jąder). Standardowe testy na bakteriach nie wykazały zdolności akrylamidu do indukowania mutacji punktowych. Badanie mutacji genowych na komórkach ssaków w warunkach in vitro dały wynik niejednoznaczny. Niektórzy badacze przypuszczają, że aktywność akrylamidu może być związana z działaniem klastogennym (uszkodzenie chromosomu wyrażone jego złamaniem, co może prowadzić do zmiany organizacji struktury chromosomu wskutek nieprawidłowego połączenia się jego fragmentów w nową konfigurację). Akrylamid indukował aberracje chromosomowe, powodował poliploidalność i zaburzenia wrzeciona, co wskazuje na jego działanie aneuploidalne (obecność w komórce nieprawidłowej liczby chromosomów). Akrylamid powodował uszkodzenia DNA oraz nieplanową syntezę DNA, a także tworzył addukty z DNA oraz indukował wymianę chromatyd siostrzanych. Badania w warunkach in vivo dały dodatnie wyniki dla: aberracji chromosomowych, tworzenia mikrojąder i aneuploidii w szpiku kostnym, co sugeruje, że akrylamid jest bezpośrednio działającym mutagenem, ale prawdopodobnie powoduje skutek klastogenny, a nie mutacje genowe. Akrylamid wykazywał działanie mutagenne w komórkach rozrodczych samców. Wyniki dodatnie otrzymano dla skutków obejmujących: aberracje chromo-somowe, tworzenie mikrojąder, wymianę chromatyd siostrzanych, nieplanową syntezę DNA, dominujące mutacje letalne i dziedziczne translokacje. Za działanie mutagenne akrylamidu może być odpowiedzialny metabolit, glicydamid, który zarówno w badaniach przeprowadzonych w warunkach in vitro, jak in vivo powodował działanie mutagenne i genotoksyczne. Akrylamid działał rakotwórczo na szczury i myszy. U zwierząt w badaniach przewlekłych wykazano wzrost częstości występowania nowotworów u szczurów: tarczycy, jąder, gruczołów sutkowych, trzustki, serca, jamy ustnej i skóry, być może także ośrodkowego układu nerwowego (OUN) oraz u myszy: gruczołu Hardera, płuc, sutka, jajników oraz przedżołądka. Podobne działanie wykazywał także metabolit związku – glicydamid. Badania epidemiologiczne ludzi narażonych zawodowo, jak i środowiskowo (na akrylamid w diecie) nie dają jasnego obrazu zależności narażenia na związek a występowania nowotworów. W IARC zaklasyfikowano akrylamid do grupy 2A (substancja prawdopodobnie rakotwórcza dla ludzi), SCOEL zaliczył związek do grupy B rakotwórczości (genotoksyczne kancerogeny, dla których istniejące dane są niewystarczające do zastosowania modelu LNT). W badaniach na zwierzętach stwierdzono szkodliwy wpływ akrylamidu na płodność samców: zmniejszenie liczby plemników, zmiany morfologiczne nasienia, zaburzenia zachowań kopulacyjnych, dominujące mutacje letalne. U potomstwa samców narażonych na akrylamid stwierdzono zwiększenie resorpcji płodów i zmniejszenie liczebności miotów (skutek mutacji letalnych). Akrylamid nie wpływał na rozrodczość u samic. W badaniach toksyczności rozwojowej większość objawów u potomstwa obserwowano po dawkach akrylamidu powodujących toksyczność matczyną. Akrylamid dobrze wchłania się: drogą inhalacyjną, pokarmową (do 98% u szczurów, do 44% u myszy) i w mniejszym stopniu przez skórę; wiąże się specyficznie z krwinkami czerwonymi oraz spermatydami i przenika przez barierę łożyska. Akrylamid jest szybko metabolizowany przez sprzęganie z glutationem lub utlenianie przy udziale CYP2E1. Ten drugi szlak metaboliczny prowadzi do powstania epoksydowej pochodnej – glicydamidu (GA). Zarówno akrylamid, jak i GA wiążą się z hemoglobiną i/lub DNA. Akrylamid i jego metabolity ulegają wydalaniu z moczem. U ludzi po podaniu doustnym wydalało się z moczem w ciągu doby około 50% podanej dawki. Okres połowicznego wydalania oszacowano na około 3 h. Addukty hemoglobiny z akrylamidem i glicydamidem oraz metabolity obecne w moczu mogą służyć jako biomarkery narażenia na akrylamid. Za podstawę do zaproponowania wartości NDS akrylamidu przyjęto jego działanie neurotoksyczne na ludzi. U pracowników narażonych zawodowo na akrylamid o stężeniu przekraczającym 0,3 mg/m³ istotnie częściej występowało drętwienie dłoni i stóp niż w grupie pracowników narażonych na akrylamid o stężeniu poniżej 0,3 mg/m³. W celu ustalenia wartości NDS akrylamidu z wartości NOAEL 0,1 mg/m³ przyjęto jeden współczynnik niepewności związany z różnicami wrażliwości osobniczej u ludzi. Ilościowa ekstrapolacja wyników badań działania rakotwórczego związku u zwierząt na ludzi jest praktycznie niemożliwa, gdyż na powstawanie nowotworów obserwowanych u szczurów istotny wpływ mają czynniki specyficzne dla tego gatunku. Obliczona wartość NDS akrylamidu wynosi 0,05 mg/m³. Dla państw członkowskich UE istotne znaczenie mają wartości wiążące BOELV, a dla akrylamidu Komitet Doradczy ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH) przyjął w 2012 r. propozycję wartości BOELV w zakresie stężeń 0,07 ÷ 0,1 mg/m³. W Niemczech dla ryzyka akceptowanego 4-10-4 zaproponowano wartość dopuszczalną dla akrylamidu na poziomie 0,07 mg/m³. Biorąc pod uwagę powyższe ustalenia, zaproponowano przyjęcie stężenia 0,07 mg/m³ za wartość NDS akrylamidu. Ze względu na wchłanianie akrylamidu przez skórę związek oznakowano literami “Sk”. W badaniach pracowników narażonych na akrylamid stwierdzono wyraźną zależność między poziomem adduktów akrylamidu z hemoglobiną (N-(2-karbamoiloetylo)-waliny, AA-Hb) a występowaniem objawów ze strony obwodowego układu nerwowego. Dla objawów drętwienia/mrowienia stóp lub nóg (najwcześniej występujących) ustalono wartość NOAEL na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu około 0,1 mg/m³. Jest to obowiązująca wartości NDS dla akrylamidu w Polsce. Do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym dla akrylamidu we krwi przyjęto stężenia adduktów akrylamidu z hemoglobiną. W Niemczech przyjęto dwie wartości: BLW (biologischer leitwert – dopuszczalna wartość biologiczna) na poziomie 550 pmol AA-Val/g globiny oraz BAR (biologischer arbeitsstoff-referenzwert – biologiczna wartość referencyjna) na poziomie 50 pmol AA-Val/g globiny. W SCOEL ustalono wartość wyjściową BGV dla niepalącej populacji generalnej na poziomie 80 pmol AA-Val/g globiny. Żadna z tych wartości nie była porównywana z wartościami dopuszczalnych stężeń akrylamidu w powietrzu na stanowiskach pracy, których zarówno w SCOEL, jak i w Niemczech dla akrylamidu nie ustalono.Ze względu na dużą zmienność stężeń adduktów akrylamidu z hemoglobiną w populacji nienarażonej zawodowo na akrylamid, a także fakt, że pomiar adduktów z hemoglobiną jest metodą inwazyjną, wymagającą ponadto wyspecjalizowanej aparatury, zrezygnowano z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla akrylamidu.
Acrylamide (AA) is a chemical compound that occurs at room temperature in the form of colorless crystals or flakes. It is not found in the natural environment, but it can be produced in thermal food processes (frying, baking). It is also present in cigarette smoke. Acrylamide is categorized as a toxic substance that poses substantial health risk after long-term exposure via inhalation, ingestion or skin contact. It is a category 2 (IB) mutagen and category 2 (IB) carcinogen. AA is known to induce adverse effects on reproduction, eye irritation and allergic skin reactions. Acrylamide is produced in multitonnage quantities. It is mostly used to synthesize polyacrylamides applied in wastewater treatment, manufacturing paper, processing ore, manufacturing vinyl polymers; it is also used as a grouting agent in constructing dams and tunnels. Polyacrylamide gel is utilized in the process of electrophoresis (PAGE) commonly used in numerous laboratories.Occupational exposure to acrylamide may occur during the production, processing and distribution of this compound and also during its application in construction and assembly works (e.g., construction of tunnels, sewer grouting work). In Poland occupational exposure to acrylamide is observed in chemical and pharmaceutical plants as well as in laboratories of research institutes and tertiary education schools. Over 2000 workers (mostly women) were exposed to this compound in the years 2005-2010 (2525 workers in 2010). According to the data produced by the Chief Sanitary Inspectorate in 2011 and 2012 there were no workers exposed to acrylamide at levels exceeding maximum allowable concentration (MAC) in the air, namely over 0.01 mg/m3. Acrylamide is found to exert neurotoxic effects. Clinical symptoms of acute and chronic poisoning are similar in humans, and symptoms of peripheral neuropathy, such as loss of sensation, paresthesia (numbness/ tingling in hands and feet), reduced muscle tone and diminished tendon reflexes are most common. In addition, hand tremors and unsteady gait, diminished sensitivity to light and inability to distinguish colors can be ob-served. Peripheral neuropathy symptoms were significantly more frequent in workers exposed to A A concentrations exceeding 0.3 mg/m3. Based on the biological monitoring (acrylamide adducts with hemoglobin, AA-Hb) of AA-exposed w’orkers no-observed adverse effect level (NOAEL) for numbness/tingling in hands/ feet has been set at 0.51 nmol AA-Hb/g globin. This value corresponds to the air AA concentration of 0.1 mg/m3. In w'orkers exposed to this compound dermatitis manifested by skin peeling, mostly in the palm, is also observed. The results of animal studies on acute AA toxicity have revealed symptoms of neurotoxicity, regardless of the exposure route. In the available literature there is no information about long-term inhalation studies on animals. Subchronic and chronic studies (after intraperitoneal and ingestion exposure) showed mainly neurotoxic effect of this compound. Clinical symptoms of animal AA exposure were manifested by incoordination, unsteady gait and diminished strength of hind limbs leading to paralysis. Histopathological examinations of animals most frequently showed degenerated axons and Schwann cells in the spinal cord and peripheral nerves. The NOAEL value for chronic neurotoxicity in rats has been set at 0.5 mg/kg b.w./day. Acrylamide induced male reproductive pathology (degeneration of the germinal epithelium in testes and seminiferous tubules, exfoliation of germ cells in the epididymis and atrophy of testes). Standard bacteria testing show'ed lack of AA ability to induce point mutations. The in vitro study of gene mutations on mammal cells yielded controversial results. Some researchers suppose that the AA activity’ may be associated with the clastogenic effect (a broken chromosome, which may lead to chromosome reorganization due to incorrect coupling of its fragments into a new configuration). Acryla- rnide induced chromosome aberrations, polyploidy and spindle disorders, which indicates its aneuploidal effect (the incorrect number of chromosomes in the cell). Acrylamide was responsible for DNA damage, unscheduled DNA synthesis, production of DNA adducts and induction of sister chromatid exchange. In vivo studies yielded positive results for chromosome aberration, production of micronuclei and aneu- ploidy in bone marrow, which suggests that acrylamide is a mutagen characterized by direct action, however, it is most likely that it exerts the clastogenic effect, but not gene mutations. Acrylamide showed the mutagenic effect in male reproductive cells. Positive results wrere obtained for such effects as chromosome aberra-tions, production of micronuclei, sister chromatid exchange, unscheduled DNA synthesis, dominant lethal mutations and hereditary trans-locations. It is likely that metabolite glycidam- ide, which exerts mutagenic and genotoxic effects in both in vivo and in vitro studies, is re-sponsible for the mutagenic effect of acrylamide. Acrylamide was found to show a carcinogenic effect in rats and mice. Animal chronic studies revealed an increased incidence of cancers of thyroid, testes, mammary7 glands, pancreas, heart, oral cavity and skin and maybe also of the central nervous system (CNS) in rats as well as cancers of the Harderian gland, lungs, mammary glands, ovaries and foreestomach in mice. Glicydamide, AA metabolite, showed a similar effect. Epidemiological studies of people occupationally and environmentally (diet) exposed to acrylamide have not provided explicit evidence of the relationship between AA exposure and cancer risk. Acrylamide has been classified into group 2A (the agent probably carcinogenic to humans) by the International Agency for Research on Cancer and to group B (genotoxic carcinogen, for which the existence of a threshold cannot be sufficiently supported at present) by the Scientific Committee on Occupational Exposure Limit (SCOEL). Animal studies have evidenced an adverse effect of acrylamide on male reproduction/fertility, including a reduced number of sperm cells, morphological changes in sperm, altered sexual behavior, dominant lethal mutations. An increased fetal resorption and decreased litter size (resulting from lethal mutations) wrere observed in the progeny of males exposed to acrylamide. No effect on re-production was found in females. In the studies of developmental toxicity the majority of symptoms were observed after administration of AA doses responsible for inducing maternal toxicity. Acrylamide is well absorbed via inhalation and ingestion (up to 98% in rats and up to 44% in mice), less absorbed through the skin; specifically bound to red blood cells and spermatids and permeats through the placental barrier. Acrylamide is rapidly metabolized through conjuga¬tion to glutathione or CYP2El-mediated oxidation. The latter metabolic pathway leads to the production of glycidamide (GA), an epoxy derivative. Both acrylamide and GA can bind to hemoglobin and/or DNA. Acrylamide and its metabolites are excreted in the urine. In humans 50% of an orally administered dose w7as excreted in the urine in 24 h. Excretion half-time is esti-mated at approximately 3 h. Hemoglobin ad¬ducts of acrylamide, glycidamide and urinary metabolites can serve as biomarkers of acrylamide exposure. The neurotoxic AA effect on humans has been adopted as the basis for the proposed MAC value of this compound. In workers occupationally exposed to acrylamide at the concentration exceeding 0.3 mg/m3 numbness in palms and feet was observed more frequently than in those exposed to lower concentrations (below 0.3 mg/m3). To establish a MAC value of acrylamide from the value of NO- AEL 0.1 mg/m3, one uncertainty coefficient, related to individual differences in human sensitivity, has been adopted. The qualitative extrapolation of results obtained from carcinogenicity studies in laboratory7 animals to humans is practically impossible since the development of cancers observed in rats is significantly influenced by species-specific factors. The calculated MAC value for acrylamide is 0.05 mg/m3. It should be stressed that in the European Union the binding occupational exposure level value (BOELV) is most important. In 2012 the Advisor} Committee for Safety and Health at Work (ACSH) accepted a proposal on BOELV for acrylamide concentration within the range of 0.07 - 0.1 mg/m3. Also in Germany MAC for acrylamide was proposed at 0.07 for acceptable risk 4 - 1CH. Bearing in mind the aforesaid stipulations MAC of 0.07 mg/m3 for acrylamide has finally been proposed. On account of acrylamide ab-sorption through the skin the standard value for the compound is labeled "Sk". Studies of w7orkers occupationally exposed to acrylamide showed explicitly a relationship between the level of acrylamide adducts with hemoglobin (N-(2- -carbamoylethyl)-valine, AA-Hb) and the occurrence of symptoms in the peripheral nervous system. For numbness/tingling in feet or legs (the most commonly observed symptoms) the NOAEL value has been set at 0.51 nmol AA-Hb/g glo- bin. This value corresponds to AA concentration in the air of 0.1 mg/m3. This is a binding MAC value for acrylamide in Poland. Concentrations of acrylamide adducts with hemoglobin have been adopted to estimate admissible value in the biological material for acrylamide in blood. In Germany two values have been adopted, BLW (biologischer leitwert, biological limit value) of 550 pmol AA-Val/g globin and BAR (biologischer arbeitsstoff-referenzetwert, biological reference value) of 50 pmol AA-Val/g globin. SCOEL adopted an initial BGV (biological guidance value) for the non-smoking general population, which was set at 80 pmol AA-Val/g globin. None of these values was comparable with MAC values for acrylamide in workplace air; neither SCOEL nor Germany established such values. In view of great variations in the concentration of acrylamide adducts with hemoglobin in the population non-occupationally exposed to acrylamide as well as the fact measuring hemoglobin adducts involves an invasive procedure that requires highly specialized equipment, the establishment of BEI for acrylamide has been abandoned.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 2 (80); 5-71
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Nitroethane : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Kilanowicz, A.
Skrzypińska-Gawrysiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/137842.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Jest stosowany jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako rozpuszczalnik: estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Nie ma danych dotyczących stężeń nitroetanu w powietrzu w warunkach narażenia zawodowego. W latach 2010-2015 nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach przekraczających obowiązującą wartość NDS – 75 mg/m³ (taka wartość NDS obowiązuje od 2010 r.). Nitroetan może wchłaniać się w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3. roku życia, które przypadkowo wypiły zmywacz do sztucznych paznokci, zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica, czasem wymioty. Poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Nie ma danych ani o zatruciach przewlekłych ludzi nitroetanem, ani danych epidemiologicznych. Na podstawie wyników toksyczności ostrej zaklasyfikowano nitroetan do związków szkodliwych. Nie wykazano działania drażniącego związku na oczy i skórę ani jego działania uczulającego. Na podstawie wyników badań podprzewlekłych (4 i 90 dni) i przewlekłych (2 lata), którym poddano szczury i myszy narażane na nitroetan w zakresie stężeń 310 ÷ 12 400 mg/m³, stwierdzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenia: wątroby, śledziony, ślinianek i małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Najmniejsze stężenie nitroetanu, podczas którego w badaniach przewlekłych prowadzonych na szczurach stwierdzano skutki działania tego związku (zmniejszenie masy ciała i subtelne zmiany w parametrach biochemicznych u samic), wynosiło 525 mg/m3 (LOAEL). Wychodząc z wartości LOAEL oraz stosując odpowiednie współczynniki niepewności, zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) nitroetanu równej 62 mg/m³. Wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu zaproponowano, zgodnie z przyjętą metodologią ustalania wartości chwilowej dla związków o działaniu drażniącym, na poziomie trzykrotnej wartości NDS, tj. 186 mg/m³, co zapobiegnie skutkom podrażnienia sensorycznego u ludzi. Ze względu na działanie methemoglobinotwórcze nitroetanu, zaproponowano także przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% methemoglobiny (MetHb) we krwi, jak dla wszystkich substancji methemoglobinotwórczych. W Scientific Committee on Occupational Exposure Limits (SCOEL) wartość dopuszczalnego poziomu narażenia zawodowego dla nitroetanu TWA (8 h) zaproponowano na poziomie 62 mg/m³ (20 ppm), wartość krótkoterminową STEL (15 min) na poziomie 312 mg/m³ (100 ppm) oraz notację „skóra”. Wartości OEL i STEL zaproponowane w SCOEL dla nitroetanu podlegały konsultacjom publicznym, prze-prowadzonym w 2011 r. przez punkty kontaktowe, podczas których Polska nie zgłosiła zastrzeżeń do tych propozycji. Wartości zaproponowane dla nitroetanu przez SCOEL zostały przyjęte przez Komitet Doradczy ds. Bezpieczeństwa i Ochrony Zdrowia w Miejscu Pracy UE (ACSH) i umieszczone w projekcie dyrektywy ustalającej IV wykaz wskaźnikowych dopuszczalnych wartości narażenia zawodowego.
Nitroethane is a colorless oily liquid with a mild fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), and as a solvent or dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur during the process of its production and processing. There are no data on air concentrations of nitroethane in occupational exposure. In 2010–2015, workers in Poland were not exposed to nitroethane concentrations exceeding the maximum allowable value – 75 mg/m3 (the limit value valid since 2010). Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. The discussed cases of nitroethane acute poisoning caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane concerned children under three years. Few hours after ingestion, cyanosis and sporadic vomiting were observed in children. The methemoglobin level reached 40÷50%. Neither data on chronic nitroethane poisoning in humans nor data obtained from epidemiological studies are available. On the basis of the results of acute toxicity studies nitroethane has been categorized in the group of hazardous compounds. However, eye and dermal irritation or allergic effects have not been evidenced. The studies of sub-chronic (4 and 90 days) and chronic (2 years) exposure to nitroethane performed on rats and mice (concentration range 310 ÷ 12 400 mg/m3 ) revealed the methemoglobinogenic effect of this compound and a minor damage to liver, spleen, salivary gland and nasal turbinates. Niroethane has shown neither mutagenic nor carcinogenic effects. Its influence on fertility has not been evidenced either. After chronic exposure (2 years) of rats to nitroethane at concentration of 525 mg/m3 (the lowest observed adverse effect level – LOAEL), a slight change in a body mass of exposed female animals and subtle changes in biochemical parameters were observed, but there were no anomalies in hematological and histopathological examinations. The value of 62 mg/m3 has been suggested to be adopted as the MAC value for nitroethane after applying the LOAEL value of 525 mg/m3 and relevant coefficients of uncertainty. The STEL value for nitroethane was proposed according to the methodology for determining short term exposure level value for irritating substances as three times MAC value (186 mg/m3) to prevent the effects of sensory irritations in humans. Because of its methemoglobinogenic effect, 2% Met-Hb has been suggested to be adopted as the value of biological exposure index (BEI), like the value already adopted for all methemoglobinogenic substances. The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed the timeweighted average (TWA) for nitroethane (8 h) as 62 mg/m3 (20 ppm), short-term exposure limit (STEL, 15 min) as 312 mg/m3 (100 ppm) and “skin” notation. Proposed OEL and STEL values for nitroethane were subjected to public consultation, conducted in 2011 by contact points, during which Poland did not raise any objections to the proposals. The proposed values for nitroethane by SCOEL has been adopted by the Advisory Committee on Safety and Health at Work UE (ACSH) and included in the draft directive establishing the IV list of indicative occupational exposure limit values.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 1 (91); 97-113
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dinitrotoluen – mieszanina izomerów
Dinitrotoluene
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137362.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dinitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
dinitrotoluene
toxicity
occupational exposure
MAC
Opis:
Dinitrotoluen techniczny (DNT) jest mieszaniną sześciu izomerów o przybliżonym składzie: około 76% 2,4-DNT, 19% 2,6-DNT i około 5% pozostałych izomerów, tj.: 2,3-, 2,5, 3,4- i 3,5-DNT. Związek jest głównie stosowany jako substrat do wytwarzania diizocyjanianu toluenu i diaminotoluenu do produkcji pianek poliuretanowych oraz do produkcji materiałów wybuchowych. Szacuje się, że w Polsce na DNT jest narażonych kilkaset osób. DNT w znaczących ilościach może wchłaniać się w drogach oddechowych, z przewodu pokarmowego oraz przez skórę. Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć tym związkiem u ludzi. Na podstawie wyników badań epidemiologicznych 183 górników narażonych na techniczny DNT przez ponad 20 lat wykazano, u 25% osób z badanej grupy: objawy uszkodzenia wątroby (wzrost aktywności AlAT, AspAT i γ-GTP), niedokrwistość lub problemy z oddychaniem, a u około 50% stwierdzono zwiększone wydalanie z moczem markerów nefrotoksyczności (α1-mikroglobuliny, α-GST). W badaniach większej (500 osób) kohorty stwierdzono występowanie nowotworów nerek (14 przypadków) oraz nowo-tworów dróg moczowych (6 przypadków). Wykazano, na podstawie wyników badań toksyczności ostrej, że techniczny DNT należy do związków szkodliwych, zgodnie z klasyfikacją UE. W badaniach na królikach związek nie wykazywał działania drażniącego. W badaniach podprzewlekłych przeprowadzonych na szczurach, które otrzymywały w paszy techniczny DNT w dawkach: 37,5; 75 lub 150 mg/kg/dzień przez 4 tygodnie, wykazano, oprócz spadku masy ciała po dwóch większych dawkach DNT, także istotny wzrost poziomu methemoglobiny i retikulocytów we krwi oraz ciałek Heinza w krwinkach czerwonych. Zmiany patologiczne w narządach wewnętrznych obserwowane u samców obejmowały odbarwienia i nieregularności powierzchni wątroby. Techniczny DNT w badaniach przewlekłych wywoływał nowotwory (głównie wątroby i dróg żółciowych) u szczurów oraz nowotwory nerek u myszy samców. IARC nie zaproponował klasyfikacji mieszaniny izomerów dinitrotoluenu, natomiast dwa izomery 2,4-DNT i 2,6-DNT zaliczył do grupy 2B, czyli związków o możliwym działaniu rakotwórczym dla człowieka. Przeprowadzono przewlekłe doświadczenie na szczurach, którym podawano w paszy DNT o składzie: około 98,5% 2,4-DNT lub około 1,5% 2,6-DNT. Po najmniejszej zastosowanej dawce (0,57 mg/kg/dzień dla samców i 0,71 mg/kg/dzień dla samic) nie stwierdzono skutków działania toksycznego DNT. Obserwowano jedynie łagodne nowotwory skóry (częstość występowania nieistotna statystycznie) oraz ogniska rozrostowe miąższu wątroby (również nieistotne statystycznie w porównaniu z grupą kontrolną), niemające znaczenia w przeniesieniu tych skutków na ludzi, dlatego najmniejszą stosowaną w tym doświadczeniu dawkę DNT przyjęto za wartość NOAEL związku. Wychodząc z wartości NOAEL równej 0,57 mg/kg, a także przyjmując odpowiednie współczynniki nie-pewności, obliczono wartość NDS dinitrotoluenu na poziomie 0,33 mg/m3. Zaproponowano, aby normatyw był dodatkowo oznaczony literami: Sk – substancja wchłania się przez skórę oraz Rakotw. Kat. 2 – substancja rozpatrywana jako rakotwórcza dla człowieka. Ze względu na działanie methemoglobinotwórcze związku zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHB we krwi jak dla wszystkich substancji methemoglobinotwórczych.
Technical dinitrotoluene (DNT) is a mixture of six isomers composed of 2,4-DNT (approx. 76%), 2,4-DNT (approx. 19%) and the remaining isomers, i.e. 2,3-, 2,5-, 3,4- and 3,5-DNT (approx. 5%). It is mostly applied as a substrate in the production of toluene diisocyanate and diaminotoluene used in the manufacturing of polyurethane foams and explosives. It has been estimated that in Poland there are several hundred DNT-exposed persons. Dinitroulene may be absorbed via the pulmonary and gastrointestinal tracts or through the skin. In the available literature there are no data on acute DNT intoxication in humans. Based on epidemiological studies it has been reported that in a group of 183 miners exposed to technical DNT for 20 years, 25% showed symptoms of liver damage (increased activity of AlAT, AspAT, and γ-GTP), anemia and respira-tion problems, whereas in 50% of the miners an increased excretion of nephrotoxic markers with urine (α1-microglobulin, α-GST) was observed. The study carried out on a larger (500 persons) cohort revealed 14 cases of kidney cancer and 6 cases of cancer of urinary tracts. Based on the studies of acute toxicity, it has been shown that, according to EU classification, technical DNT is a harmful compound. The studies performed on rabbits did not show any irritation signs in rabbits. The studies carried out on rats which were administrated technical DNT in three doses (37.5, 75 and 150 mg/kg/day) for four weeks revealed, besides body weight loss after two higher doses, a significant increase in the levels of methemoglobin and reticulocytes in blood, as well as in Heinz-body red blood cell counts. Pathologic changes in internal organs observed in male rats comprised depigmentation and irregularities on the surface of the liver. In the studies of chronic effects, technical DNT induced cancers mostly of the liver and bile ducts in rats and kidney cancer in male mice. The International Agency for Research on Cancer (IARC) has not proposed any classification of DNT isomer mixture; however, it categorized two isomers 2,4- and 2,6-DNT in group 2B – possibly carcinogenic to humans. A long-term experiment has been carried out on rats given DNT in fodder in the mixture of ap-prox. 98.5% of 2,4-DNT and 1.5% of 2,6-DNT. After the lowest dose (0.57 mg/kg/day for males and 0.71 mg/kg/day for females) of this compound no toxic effects were observed. Only benign neoplasms of the skin (statistically insignificant incidence) and the foci of liver parenchyma proliferation (also statistically insignificant compared to controls) were found, but insignificant as regards the extrapolation of these effects to humans. Therefore, the lowest DNT dose has been adopted as the value of its no-observed adverse effect level (NOAEL). Taking the value of NOAEL equal 0.57 mg/kg, as well as respective coefficients of uncertainty, the max-imum admissible concentration (MAC) for DNT was calculated at the level of 0.33 mg/m3. It has been sug-gested that DNT should be additionally marked with “Sk” – skin-absorbed substance and “Carcinogenic, cate-gory 2”. In view of the methemoglobinogenic property of this compound, MetHb concentration of 2% in blood as BEI value was proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 1 (59); 1-34
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitrotoluen – mieszanina izomerów
Nitrotoluene
Autorzy:
Sapota, A.
Kilanowicz, A
Powiązania:
https://bibliotekanauki.pl/articles/137449.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
nitotoluene
toxicity
occupational exposure
MAC
Opis:
Nitrotoluen (NT) jest mieszaniną trzech izomerów: 2-, 3- i 4-nitrotoluen, które nie występują w stanie naturalnym. Nitrotoluen jest wykorzystywany do produkcji azowych i siarkowych barwników do bawełny, wełny, jedwabiu, skóry i papieru, a także jest stosowany w rolnictwie, fotografii, przemyśle farmaceutycznym oraz przy produkcji gum. Nie ma udokumentowanych danych dotyczących zatruć ostrych, przewlekłych oraz danych epidemiologicznych osób narażonych na nitrotoluen. Z badań toksyczności ostrej na zwierzętach doświadczalnych wynika, że zakresy wartości DL50 dla szczurów i myszy po podaniu dożołądkowym (per os) dla izomerów 2- i 3-NT wynosiły 891 ÷ 2463 mg/kg m.c., natomiast dla 4-NT – 1960 ÷ 7100 mg/kg m.c. Z badań toksyczności podprzewlekłej (13 tygodni) przeprowadzonych na dwóch gatunkach gryzoni obu płci (myszy i szczury) wynika, że najbardziej toksycznym izomerem jest 2-NT. U zwierząt po 13 tygodniach narażania na 2-NT wykazano: niewielki spadek liczby erytrocytów (RBC), zmniejszone stężenie hemoglobiny, wzrost liczby retikulocytów, leukocytów, wzrost średniej objętości krwinek czerwonych oraz wzrost stężenia methemoglobiny. Wszystkie badane stężenia izomeru powodowały zaburzenia czynności wątroby, śledziony i nerek. U większości narażanych zwierząt stwierdzono zmiany w wątrobie obejmujące przerost i wakuolizację hepatocytów, a także pojedyncze ogniska zapalne zbudowane głównie z eozynofilów. Stwierdzono ponadto istotnie wzmożoną proliferację komórek hematopoetycznych w śledzionie i w szpiku kostnym. Z badań przewlekłych (2-lata) przeprowadzonych przez NTP (2002) dla 2-NT i 4-NT na my-szach i szczurach obu płci wynika, że 2-NT wykazywał znacznie większą toksyczność niż 4-NT. 2-NT zarówno u myszy, jak i szczurów powodował zmniejszenie przyrostu masy ciała, a w badaniach histopatologicznych stwierdzono występowanie nowotworów: skóry, sutka i wątroby u szczurów obu płci, natomiast u samców także międzybłonka pochewki jądra i płuc. Działanie rakotwórcze 2-NT stwierdzono również u myszy obu płci, u których zmiany nowotworowe były zlokalizowane w układzie krążenia, jelicie grubym i wątrobie. Po podaniu 4-NT stwierdzono u szczurów samców jedynie pojedyncze przypadki nowotworów skóry oraz u samic przypadki raków gruczołu łechtaczkowego. U myszy skutki kancerogenne stwierdzono tylko u samców (raki oskrzelikowo-pęcherzykowe). Z analizy rodzaju i liczby obserwowanych nowotworów można wnioskować, że ten typ nowotworów nie powinien występować w wyniku narażenia zawodowego ludzi i nie może być podstawą do analizy ryzyka. Z uwagi na brak wystarczających dowodów działania rakotwórczego 2-NT na ludzi i ograniczone dowody działania rakotwórczego na zwierzęta doświadczalne Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1996 r. zaliczyła nitrotoluen, na podstawie wyników eksperymentu 13-tygodniowego, do grupy 3., czyli związków nieklasyfikowanych jako kancerogeny dla ludzi (wyniki 2-letnich badań 2- i 4-NT wykonane na szczurach i myszach przez NTP zostały opublikowane w 2002 r.). Ze względu na brak badań toksyczności dla mieszaniny wszystkich trzech izomerów, do wyliczenia wartości NDS przyjęto wyniki 2-letnich badań dla najbardziej toksycznego izomeru, tj: 2-nitro-toluenu. W tym eksperymencie 2-NT podawano szczurom obu płci w paszy o stężeniach: 625; 1250 lub 2000 ppm przez 105 tygodni. Dawkę najmniejszą (625 ppm w paszy) odpowiadającą 25 mg/kg m.c./dzień dla samców i 30 mg/kg m.c./dzień dla samic przyjęto za wartość LOAEL. Ze względu na fakt, iż samce były znacznie bardziej wrażliwe niż samice na działanie 2-NT do obliczeń wartości NDS przyjęto dawkę 25 mg/kg m.c./dzień ustaloną dla samców za wartość LOAEL. Przyjmując cztery współczynniki niepewności, obliczono wartość NDS równą 11 mg/m3. Zaproponowana wartość NDS dotyczy poszczególnych izomerów nitrotoluenu (2-NT, 3-NT i 4-NT) oraz ich mieszaniny. Normatyw oznaczono literami „Sk‖ – substancja wchłania się przez skórę. Ze względu na działanie methemoglobinotwórcze zaproponowano wartość dopuszczalnego stężenia w materiale biologicznym (DSB) taką samą jak dla wszystkich substancji methemoglobinotwórczych, czyli 2% MetHb we krwi.
Nitrotoluene (NT) is a mixture of three isomers: 2-, 3- and 4-NT; it does not occur in a natural form. NT is used in the production of azo and sulfur dies for cotton, wool, silk, leather and paper. It is also used in the agriculture, photographic and pharmaceutical industries, as well as in the production of rubber. There are neither documented data on acute and chronic toxicity, nor epidemiological data on NT-exposed persons. The animal (rats and mice) studies of acute toxicity have revealed the following ranges of DL50 values after per os administration of isomers: 891÷2463 mg/kg body mass (b.m.) for 2- and 3-NT and 1960÷7100 mg/kg b.m. for 4-NT. Studies of subacute toxicity (13 weeks), performed on two species of rodents (mice and rats) of both genders, showed that 2-NT is the most toxic isomer. Thirteen weeks of 2-NT exposure caused an insignificant decrease in the number of erythro-cytes and in the concentration of hemoglobin, an enhanced number of reticulocytes and leuco-cytes, a diminished mean volume of erythrocytes and an augmented concentration of methe-moglobins. All the isomer concentrations induced functional disorders in the liver, spleen and kidneys. Most of the exposed animals showed lesions in the liver, mainly manifested by hyper-throphy and vacuolization of hepatocytes, and single inflammatory foci mostly composed of eosinophils. In addition, a significantly increased proliferation of hematopoietic cells in the spleen and bone marrow was observed. A long-term (2-year) study, carried out by the NTP (2002) on mice and rats (of both genders) exposed to 2-NT and 4-NT, have revealed a significantly higher toxicity of 2-NT than that of 4-NT. In both mice and rats, 2-NT decreased body mass gain. Moreover, subcutaneous skin carcino-ma, liver (hepatocellular) adenoma and mammary cancer were revealed on histopathological examination. In addition, mesothelioma of the tunica vaginalis testis and lungs were observed in males. A carcinogenic effect of 2-NT has also been found in mice of both genders, the ob-served neoplastic lesions were located in the circulatory system, large intestine and liver. Only single cases of subcutaneous carcinoma in male and clitoral carcinoma in female rats were found after 4-NT administration. In mice, carcinogenic effects of 4-NT administration were observed only in males (alveolar/bronchiolar carcinoma). Having analyzed the type and num-ber of the observed carcinomas, it can be concluded that this type of neoplasms due to occupa-tional exposure should not occur in humans and it cannot provide the basis for risk assessment. In 1996, in view of insufficient evidence that 2-NT is carcinogenic to humans on the basis of a 13-week experiment, IARC categorized nitrotoluene into group 3 — not classifiable as to its carcinogenicity to humans (the results of a 2-year study of 2- and 4-NT performed on rats and mice by NTP were published in 2002). Bearing in mind that no investigations on NT toxicity have been carried out to date, the results of a 2-year experiment for the most toxic isomer (2-NT) have been taken as a basis for calculat-ing the MAC value. In this experiment, 2-NT was administered to the rats (both genders) in their diet at three concentrations: 625, 1250 or 2000 ppm for 105 weeks. The lowest dose (625 ppm) that corresponded to 25 mg/kg body mass/day for males and 30 mg/kg body mass/day for females was accepted as the LOAEL value. Considering that males were much more sensitive to 2-NT effects than females, a dose of 25 mg/kg b.m./day set for males as the LOAEL value, was taken as a basis for the calculation of the MAC value. Having assumed four coefficients of un-certainty, the MAC value for NT was calculated at the level of 11 mg/m3. The recommended MAC values apply to individual NT isomers (2-NT, 3-NT and 4-NT) and to their mixture as a whole. It has been suggested to mark NT with ―Sk‖ — skin absorbed substance, and in view of its methemoglobinogenic effect, to adopt 2% MetHb in blood as the biological exposure index (BEI), like for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 93-132
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anilina. Dokumentacja dopuszczalnych wielkości narażenia zawodowego
Aniline. Documentation
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137650.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
anilina
toksyczność
narażenie zawodowe
NDS
aniline
toxicity
occupational exposure
MAC
BEI
Opis:
Anilina jest oleistą, bezbarwną cieczą o charakterystycznym zapachu. Sklasyfikowana jest jako substancja toksyczna, która działa toksycznie: przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Może powodować uszkodzenie oczu i uczulenie w kontakcie ze skórą. Produkcja aniliny jest wielkotonażowa. Anilina jest wyjściową substancją do otrzymywania związków przejściowych, stosowanych w różnych gałęziach przemysłu, głównie do produkcji 4.4'-metylenodianiliny –związku wyjściowego do otrzymywania mas poliuretanowych oraz do produkcji: związków dla przemysłu gumowego, barwników, pestycydów i farmaceutyków. Zawodowe narażenie na anilinę może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także w procesie uwalniania aniliny jako produktu rozkładu przy termicznej degradacji mas plastycznych (np. w odlewniach czy w przemyśle gumowym przy wulkanizacji gumy) oraz stosowania produktów zawierających anilinę (np. barwniki). Stężenia aniliny w powietrzu środowiska pracy w różnych gałęziach przemysłu obecnie nie przekraczają 3,6 mg/m3. W Polsce wg danych GIS w 2010 r. a nie było pracowników narażonych w środowisku pracy na anilinę o stężeniach w powietrzu przekraczających wartość najwyższego dopuszczalnego stężenia (NDS) związku, czyli 5 mg/ m3. W ostrych zatruciach pracowników narażonych zawodowo na anilinę obserwowano: sinicę, we krwi anemię z obecnością ciałek Heinza, ogólne osłabienie, zaburzenia umysłowe, drgawki i duszność. Obraz przewlekłego zatrucia aniliną w warunkach przemysłowych nie jest jednoznaczny, ponieważ wielu badaczy nie potwierdza możliwości powstania zatruć przewlekłych aniliną, wskazując raczej na sumowanie się skutków wielokrotnych zatruć ostrych. Na podstawie wyników badań toksyczności ostrej aniliny na zwierzętach wykazano, że niezależnie od drogi narażenia {per os lub inhalacyjną) występują podobne objawy narażenia: sinica, objawy ze strony ośrodkowego układu nerwowego oraz wzrost stężenia MetHb we krwi, zależny od wielkości stężenia (dawki) aniliny. Obserwowano także duże różnice gatunkowe we wrażliwości zwierząt na anilinę. Podprzewlekłe i przewlekłe narażenie szczurów i myszy na anilinę drogą inhalacyjną lub pokarmową skutkowało głównie, w zależności od wielkości dawki (stężenia), wzrostem: poziomu MetHb i ciałek Heinza oraz retikulocytów we krwi, a także objawów uszkodzenia śledziony. Testy w warunkach in vitro na organizmach niższych (nie ssakach) nie wykazały zdolności aniliny do indukowania mutacji punktowych. Anilina indukowała aberracje chromosomowe w warunkach zarówno in vitro, jak i in vivo. Skutki te obserwowano po narażeniu na anilinę o stosunkowo dużych stężeniach. Anilina powodowała też wzrost częstości tworzenia mikrojąder w komórkach somatycznych myszy i szczurów w warunkach in vivo tylko w zakresie dawek wywołujących methemoglobinemię i inne skutki toksyczne. Wyniki testów dotyczących uszkodzeń DNA przez anilinę, zarówno w warunkach in vitro, jak i in vivo, są dość rozbieżne, ale pozwalają jednak przypuszczać, że zdolność aniliny do bezpośredniego uszkodzenia DNA jest bardzo niewielka. Działanie rakotwórcze aniliny (nowotwory śledziony) obserwowano jedynie u szczurów po przewlekłym narażeniu na duże dawki związku (72 mg/ kg i większe) i były one ograniczone tylko do jednego gatunku zwierząt oraz praktycznie jednej płci (samce). W IARC zaliczono anilinę do grupy 3. - związków nieklasyfikowanych pod względem rakotwórczości dla ludzi. Eksperci Unii Europejskiej zaklasyfikowali anilinę jako substancję rakotwórczą Carc. 2., z przypisanym zwrotem określającym rodzaj zagrożenia H351 - podejrzewa się, że powoduje raka. SCOEL zaliczył anilinę do grupy C - geno- toksycznych kancerogenów, dla których można ustalić praktyczną wartość dopuszczalną na podstawie istniejących danych. Anilina u zwierząt doświadczalnych nie wykazywała ani działania embriotoksycznego, ani teratogennego, a także nie wpływała na rozrodczość w dawkach nietoksycznych dla matek. Anilina jest szybko wchłaniana: z przewodu pokarmowego i dróg oddechowych oraz przez skórę. Wydajność wchłaniania z przewodu pokarmowego zwierząt wynosi, w zależności od gatunku, od 56 do ponad 90%. Szybkość wchłaniania par aniliny w drogach oddechowych ludzi (ochotników) w stanie spoczynku wynosiła odpowiednio 2-11 mg/h, gdy stężenie wynosiło 5 – 30 mg/m3, a retencja wynosiła 91,3%. Anilina w postaci par wchłania się również przez skórę z szybkością wchłaniania tego samego rzędu co szybkość wchłaniania w drogach oddechowych. Szybkość absorpcji wzrasta wraz ze zwiększeniem temperatury otoczenia i wilgotności. Anilina także w postaci ciekłej bardzo wydajnie wchłania się przez skórę. Na podstawie wyników badań na zwierzętach wykazano, że największe stężenia aniliny występują we krwi (zwłaszcza w erytrocytach), a także w: śledzionie, nerkach, wątrobie, pęcherzu moczowym i przewodzie pokarmowym. Śledziona była jedynym narządem, w którym nie stwierdzano spadku stężenia w miarę upływu czasu. Powtarzane podawanie aniliny prowadzi do kumulacji kowalencyjnie związanej 14C-ani- liny w erytrocytach i śledzionie. Anilina prze¬chodzi przez barierę krew/łożysko. Anilina jest metabolizowana, głównie w wątrobie, trzema szlakami metabolicznymi: N-acetylacji, C-hydroksylacji i N-hydroksylacji. Produkty N-acetylacji i C-hydroksylaqi są wydalane z moczem w postaci sprzężonej z kwasem siarkowym i/lub glukuronowym. N-Hydroksylacja prowadzi do powstawania skutków toksycznych, w tym met- hemoglobinemii. U wszystkich badanych gatunków zwierząt główną drogą wydalania metabolitów aniliny i/lub aniliny był mocz. Z kałem wydalało się jedynie poniżej 2% podanej dawki. Za krytyczne skutki toksyczne po powtarzanym narażeniu na anilinę uznano tworzenie methemoglobiny oraz toksyczność związku dla erytrocytów. Ze względu na bardzo duże różnice międzygatunkowe między zwierzętami doświadczalnymi a ludźmi w ilości tworzonej MetHb, wyprowadzenie wartości NDS oparto na dostępnych danych dla człowieka.Dla ludzi przyjęto za tolerowany poziom MetHb we krwi wynoszący 5%. Przy takim stężeniu MetHb nie obserwowano żadnych objawów klinicznych narażenia na anilinę. Na podstawie wyników badań na ochotnikach stwierdzono, że doustna dawka aniliny wynosząca 35 mg/osobę powoduje maksymalny wzrost stężenia MetHb o 3,7%. Biorąc pod uwagę fizjologiczny poziom około 1% MetHb, to maksymalny poziom MetHb wynosi 4,7%. Dawkę tę (35 mg) uznano za wewnętrzną dawkę dopuszczalną. Obliczenia mo¬delowe wykonano, zakładając 90-procentową retencję aniliny (pobranie inhalacyjne) i wentylację płuc wynoszącą u człowieka 10 m3 w ciągu 8 h zmiany roboczej. Pobranie aniliny przez człowieka drogą inhalacyjną i dermalną może bvć tego samego rzędu wielkości. Dopuszczalnej dziennej dawce aniliny wynoszącej 35 (pochodzące z pobrania drogą inhalacyjną i dermalną) odpowiada narażenie na stężenie aniliny w powietrzu wynoszące 1,9 mg/m3 przez 8 h. Wartość tę zaproponowano jako wartość NDS aniliny. Normatyw oznakowano literami „Sk" oznaczającymi substancję wchłaniającą się przez skórę. Ze względu na działanie toksyczne aniliny na: erytrocyty, tworzenie methemoglobiny i uszkodzenie śledziony prowadzące do zmian nowotworowych obserwowanych tylko u szczurów, ustalono wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) związku, aby zapobiec powstawaniu MetHb przy krótkim czasie narażenia. Zgodnie z przyjętą w Polsce metodą obliczania wartości NDSCh powinna ona zawierać się w zakresie 3,53 -s- 5,49 mg/m3. Zaproponowano przyjęcie stężenia 3,8 mg/m3 za wartość NDSCh aniliny. Wewnętrzna dawka aniliny (35 mg) odpowiada szybkości wydalania p-aminofenołu z moczem nie przekraczającej 1,5 mg/h w 2-godzinnej zbiórce moczu pobieranego pod koniec (6-8h) zmiany roboczej. Wartość 1,5 mg p-aminofenolu/h zaproponowano przyjąć jako wartość dopuszczalnego stężenia w materiale biologicznym (DSB) aniliny.
Aniline is an oily colorless liquid with a characteristic odor. It is classified as a substance that exerts toxic effects through inhalation, ingestion and skin. It can cause damage to the eyes and induce allergy by dermal contact. Aniline is produced in large quantities. It is a precursor to obtain transient compounds used in various industrial branches. It is used to produce 4,4'-methylenedianiline, a precursor for obtaining polyurethane foams, and to produce compounds of the industrial rubbers, dyes, pesticides and pharmaceutics. Occupational exposure to aniline may occur during its production, further processing and distribution, during the aniline release in the form of a breakdown product of thermal degradation of plastics (e.g., foundry or industrial rubber vulcanization) and application of aniline-containing products (e.g., dyes). Ambient air concentrations of aniline in work environments in different branches of industry do not exceed 3.6 mg/m3. According to the data rt the Chief Sanitary Inspectorate (2010), worker in Poland are not exposed to aniline air concentrations exceeding the maximum allowable i. ue of 5 mg/ m3. Acute toxic effects of the exposure to aniline are cyanosis, anemia with Heinz bodies in the fcfcod, asthenia, mental disorder, seizure and : srnea. Because much research has not confirm firm the possibility of acute poisoning with aniline, opinions on chronic poisoning in industrial conditions are controversial; they rather mention the effects of multiple acute poisonings. On the basis of the results of the animal studies on the aniline acute toxicity, similar symptoms (cyanosis, disorders of the central nervous system, aniline dose-dependent increase in MetHb and Heinz bodies in the blood) have been reported, regardless of the exposure route (per os or inhalation). Great interspecies differences in the sensitivity to aniline have also been observed. Ihe results of the subchronic and chronic inhalation or oral exposure of rats and mice to aniline were dose-dependent increase in the level of reticulocytes, MetHb and Heinz bodies in the blood, and in the symptoms of spleen damage. In vitro tests in lower organisms (not mammals) proved that aniline has no ability to induce point mutations. Aniline induced chromosome aberrations in both in vitro and in vivo conditions. These effects were observed after exposure to aniline in relatively high concentrations. Aniline also increased the frequency of in vitro micronuclei production in somatic cells of mice and rats but only in doses inducing methemoglobinemia and other toxic effects. The results of in vitro and in vivo tests for DNA damage following aniline exposure are rather divergent, but the researchers can assume that the aniline ability to cause directly DNA damage is very limited. Aniline carcinogenic action (spleen cancer) was observed in rats only after chronic exposure to high doses of this compound (>72 mg/kg). This was limited to a single animal species and practically to one gender (males). The International Agency for Research on Cancer (IARC) categorized aniline according to its potential carcinogenic risk to group 3 as not classifiable as to its carcinogenicity in humans. The European Union experts classified aniline as a carcinogenic sub-stance (Care. 2) and labeled with H351 (suspected of being carcinogenic), whilst SCOEL classified it into group C: genotoxic carcinogens with the possibility to define on the basis of the available data a practical value of allowable concen-tration. Aniline showed neither embriotoxic nor teratogenic effects in experimental animals. Neither effects on reproduction in doses not toxic to dams have been reported.Aniline is absorbed very quickly from the gastrointestinal tract and the lungs, and through the skin. The absorption from the animal gastrointestinal tract ranges from 56-90% or more, de-pending on the species. Aniline vapor absorption from airways by humans at rest (volunteers) was 2+11 mg/h at concentration of 5+30 mg/m3 and retention of 91.3%. Aniline in the form of vapor is also absorbed through the skin with velocity similar to the airway absorption. The absorption velocity increases with the increasing environmental temperature and humidity. Aniline in the liquid form is also efficiently absorbed through the skin. On the basis of the results of animal studies, the highest aniline concentration was in the blood (in erythrocytes) and in the spleen, kidneys, liver, urinary bladder and alimentary tract. The spleen was the only organ in which no decrease in aniline concentration over time was observed. A repeated administration of the substance leads to the accumulation and covalent binding of 14C-aniline in erythrocytes and the spleen. Aniline readily crosses the blood-placental barrier. Aniline is metabolized in the liver via three metabolic routes: N-acetylation, C-hydroxylation and N-hydroxylation. N-hydroxylation and C-hydroxylation products coupled with sulfuric and/or glucuronic acid are excreted with urine. N-hydro- xylation has toxic effects, including methemoglobinemia. In all tested animal species urine was the main elimination route of aniline metabolites and/or aniline. Only 2% of the dose wTas excreted with feces.The production of methemoglobin and aniline- induced erythrocyte toxicity have been recognized as critical toxic effects of aniline after its repeated administration. Interspecies differences in the amount of produced MetHb between experimental animals and humans and the determination of MAC values were based on the available human data. Tolerable level for people of blood MetHb is 5%. At this MetHb concentration, no clinical symptoms of exposure to aniline were observed. The studies in a group of volunteers showed that an oral aniline dose of 35 mg/person caused a maximum 3.7% increase in MetHb concentration. The physiological level is about 1% of MetHb and the maximum level is 4.7%. The 35-mg dose was adopted as an allowable internal dose. The model calculations were done, including a 90% retention of aniline (inhalation intake) and the human lung ventilation of 10 m3 during the 8-h work shift. Aniline intake by a person via inhala-tion and dermal routes may be the same. An allowable 35-mg daily aniline dose (both inhalation and dermal intake) corresponds with the exposure to aniline air concentration of 1.9 mg/m3 for 8 h. This value has been suggested as the aniline MAC value. The standard was labeled with "Sk" indicating dermal absorption of the substance. Because of the effects of aniline on erythrocytes, methemoglobinemia and damage to spleen leading to carcinogenic lesions observed only in rats, the maximum allowable short-term level of the aniline was defined to prevent the production of MetHb in short-time exposure. According to the calculation method of maximum allowable values in Poland, shortterm level should range from 3.53+5.49 mg/m3. Therefore, the concentration of 3.8 mg/m3 was proposed as the short-term level value for aniline. An internal 35-mg dose of aniline corresponds with the velocity of p-aminophenol urinal excretion under 1.5 mg/h in a 2-h collection at the end of work shift (6+8 h). The maximum allowable concentration in the biological material for aniline is 1.5 mg of p-aminophenol/h.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 2 (76); 19-56
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
4-Metoksyfenol
4-Methoxyfenol
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138421.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
4-metoksyfenol
toksyczność
narażenie zawodowe
NDS
4-methoxyphenol
toxicity
occupational exposure
MAC
Opis:
4-Metoksyfenol (4-MF) jest białą substancją w postaci krystalicznych płatków lub o konsystencji wosku. Jest stosowany jako przeciwutleniacz dla tłuszczów, olejów, witamin i kosmetyków, inhibitor polimeryzacji monomerów akrylowych i metakrylowych oraz różnych monomerów winylowych. Jest także związkiem pośrednim w produkcji barwników, farmaceutyków, plastyfikatorów i stabilizatorów. Stosowany jest ponadto jako stabilizator chlorowanych węglowodorów, etylocelulozy, olejów smarowych w przemyśle włókienniczym oraz do hamowania skutków działania promieniowania UV na skórę i do odbarwiania skóry. 4-Metoksyfenol jest także stosowany jako lek odbarwiający resztkową pigmentację skóry w przypadku bielactwa (vitiligo universalis) oraz w leczeniu czerniaka skóry. U pacjentów, którym 4-metoksyfenol podano w postaci wlewu dotętniczego w dużej ilości (27 g), wystąpiły objawy uszkodzenia wątroby i nerek oraz spadek stężenia hemoglobiny. W dostępnym piśmiennictwie dane na temat narażenia zawodowego na 4-metoksyfenol są nieliczne. Opisano dwa przypadki zawodowego bielactwa skóry (occupational leucoderma) u pracowników mających kontakt z 4-metoksyfenolem. Jeden z pracowników był narażony na ten związek przez 11 lat, a drugi przez 3 lata. Odbarwienie obejmowało skórę na grzbiecie obu dłoni oraz na przedramionach i skroni. Toksyczność ostra 4-metoksyfenolu jest stosunkowo mała. Po podaniu dootrzewnowym 4-metoksyfenolu u zwierząt obserwowano objawy niedotlenienia (anoksja) i paraliż, a większe dawki 4-metoksyfenolu działały narkotycznie. 4-Metoksyfenol wykazuje działanie drażniące na skórę i oczy, a po aplikacji na skórę królików wywołuje jej znaczną martwicę. W testach przeprowadzonych na samicach świnek morskich wykazywał umiarkowane działanie uczulające. W badaniach przewlekłych przeprowadzonych na szczurach 4-metoksyfenol podawano w paszy o stężeniach 0,02 ÷ 5% przez okres 4 ÷ 104 tygodni. Po narażeniu na 4-metoksyfenol o najmniejszym stężeniu nie obserwowano efektów toksycznych, natomiast związek o większym stężeniu powodował spadek przyrostu masy ciała, rozrost nabłonka przedżołądka, nadżerki i owrzodzenia. Po dłuższym czasie narażenia (52 tygodnie) nadżerki i owrzodzenia występowały także w gruczołowej części żołądka. Przedłużenie narażenia na 2-procentowy 4-metoksyfenol w paszy do 104 tygodni prowadziło do pojawienia się zmian nowotworowych w postaci brodawczaków i raków kolczystokomórkowych. 4-Metoksyfenol nie jest klasyfikowany pod kątem rakotwórczości. NTP nie prowadziło badań nad działaniem rakotwórczym i genotoksycznym tego związku. 4-Metoksyfenol nie działa także mutagennie. W dostępnym piśmiennictwie nie znaleziono także danych na temat działania embriotoksycznego, fetotoksycznego i teratogennego związku. Za podstawę ustalenia wartości NDS 4-metoksyfenolu przyjęto wyniki badań Hodge`a i in. wykonane na szczurach obu płci (po 10 w grupie). Szczury otrzymywały w paszy przez okres do 7 tygodni 4-metoksyfenol o stężeniach 0,02 ÷ 5%. Nie wykazano u zwierząt narażanych na 0,02-procentowy 4-metoksyfenol żadnych zmian toksycznych w porównaniu ze zwierzętami z grupy kontrolnej; większe stężenia związku powodowały już spadek przyrostu masy ciała zwierząt. Na podstawie otrzymanych wyników stężenie 0,02-procentowe związku w paszy uznano za wartość NOEL 4-metoksyfenolu. Po przeliczeniu tej dawki na masę ciała człowieka i zastosowaniu łącznego współczynnika niepewności (równego 36) wyliczono wartość NDS 4-metoksyfenolu, która wynosi 5 mg/m3. Wartość ta powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym i drażniącym związku. Nie ma podstaw do ustalenia wartości NDSCh i DSB 4-metoksyfenolu. Ze względu na działanie szkodliwe związku na skórę i prawdopodobne wchłanianie tą drogą zaproponowano także oznakowanie 4- metoksyfenolu literami „Sk”.
4-Methoxyfenol (4-MF) is a white substance that occurs in the form of crystalline flakes or in the consistency of wax. It has a variety of applications in several industries. Due to its antioxidative properties it is used against peroxidation of fats, oils, vitamins and cosmetics. It is also used as an inhibitor of acrylic and meta-acrylic monomer polymerization and various vinyl polymers; as an agent stabilizing chlorinated hydrocarbons, ethyl cellulose, lubricating oil in the textile industry; as an inhibitor of UV radiation effects on the skin and as a skin depigmenting agent; as a chemical intermediate in the production of dyes, pharmaceutics, softening and stabilizing agents; as a drug decolorizing skin residual pigmentation in the case of vitiligo universalis; and in the treatment of melanoma in the skin. Patients who received a high dose (27 g) of 4-MF in intra-arterial infusion showed symptoms of liver and kidney damage as well as a decreased concentration of hemoglobin. In the available literature, reports on occupational exposure to 4-MF are rather scarce.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 101-119
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Etoksyetanol
2-Etoxyethanol
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137569.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-etoksyetanol
toksyczność
narażenie zawodowe
NDS
2-ethoxyethanol
toxicity
occupational exposure
MAC
Opis:
2-Etoksyetanol (2-EE) jest bezbarwną cieczą o temperaturze wrzenia 135 oC stosowaną w wielu gałęziach przemysłu (chemicznego, metalurgicznego, mechanicznego, elektronicznego i meblowego) oraz w takich produktach powszechnego użytku, jak: atrament, kosmetyki, a także środki czyszczące. Na podstawie wyników badań toksyczności ostrej na zwierzętach wykazano, że według kryteriów klasyfikacji 2-etoksyetanol należy do związków szkodliwych. W warunkach narażenia zawodowego wchłania się do organizmu w drogach oddechowych oraz przez skórę (w postaci par i ciekłej). Na podstawie wyników zarówno badań na zwierzętach doświadczalnych (szczurach, myszach, królikach i psach), jak i badań epidemiologicznych ludzi narażonych zawodowo na działanie tego związku stwierdzono, że wykazuje on działanie hematotoksyczne oraz wpływa na rozrodczość. Skutki te u zwierząt doświadczalnych obserwowano jedynie po narażeniu na działanie związku o dużych stężeniach lub po podaniu zwierzętom dużych jego dawek. U zwierząt doświadczalnych 2-etoksyetanol wykazywał także działanie embriotoksyczne, fetotoksyczne i teratogenne. 2-Etoksyetanol nie wykazywał działania mutagennego ani rakotwórczego.
2-Etoxyethanol (2-EE) is a colorless liquid with the boiling point of 135oC. It is used in numerous industries (chemical, metallurgic, mechanic, electronic and furniture), as well as in commonly used products, such as ink, cosmetics and detergents. The results of animal studies on acute toxicity have provided evidence that, according to the criteria of categorization, 2-etoxiethanol is a hazardous compound. In occupational exposure, 2-EE is absorbed by the body via the respiratory tract and the skin (in vapor and liquid forms). Both experimental studies on animals (rats, mice, rabbits and dogs) and epidemiological studies in human populations exposed to 2-EE have shown that this compound has a hematotoxic effect and affects reproduction. In laboratory animals these effects have been observed only after exposure to high concentrations or administration of high doses. It has also been observed that 2-EE hasembriotoxic, fetotoxic and teratogenic effects, however, neither there has been neither mutagenic nor carcinogenic effects. Epidemiological studies in persons occupationally exposed to this compound have demonstrated its hematotoxic effect and its impact on reproduction in men. The effects have been observed after exposure to ~10 mg/cm3, at the border of statistical significance; at the same time persons under study were additionally exposed to other chemical agents. The results of epidemiological studies have been a basis for estimating the maximum admissible concentration (MAC) of 2-EE, and the concentration of 10 mg/cm3is the value of no-observed adverse effect level (NOAEL). After using relevant coefficients of uncertainty the calculated MAC value of 2-EE is for 5 mg/cm3. This value should protect workers against potential hematological and spermatotoxic effects of this compound. There are no grounds for establishing its STEL value. In view of the extensive absorption of 2-EE by the skin, the compound should have the “Sk” symbol and because of its embriotoxic, fetotoxic and teratogenic effects, observed in animals, it is also suggested to use the “Ft” symbol as its additional denotation. The Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment at its 59th meeting has adopted for a 2-year period a MAC value of 2-EE proposed by SCOEL of 8 mg/m3. On the basis of the toxicokinetic model the value of the maximum admissible limit in biological material (BLV) is 60 mg of 2-ethoxyacetic acid/g creatinine in urine collected at the end of a working week.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 2 (68); 57-92
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ortokrzemian tetraetylu
Ethyl silicate
Autorzy:
Sapota, A.
Powiązania:
https://bibliotekanauki.pl/articles/137852.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
toksyczność
ortokrzemian tetraetylu
narażenie zawodowe
NDS
ethyl silicate
toxicity
occupational exposure
MAC
Opis:
Ortokrzemian tetraetylu jest bezbarwną cieczą o słabo wyczuwalnym zapachu. Związek ten znalazł zastosowanie w różnych gałęziach przemysłu, np.: w przemyśle chemicznym, farmaceutycznym czy farb i lakierów. Stosowany jest także jako preparat utwardzający (wzmacniający) kamień naturalny, terakotę, stiuk, freski i glinę, a także jest wykorzystywany przy produkcji cegieł oraz jako rozpuszczalnik wodoodporny i kwasoodporny do zaprawy murarskiej i cementu. Ortokrzemian tetraetylu wchłania się dobrze przez drogi oddechowe, z przewodu pokarmowego i słabo przez skórę. U pracowników narażonych na ortokrzemian tetraetylu związek ten wykazywał działanie drażniące na oczy i błonę śluzową nosa. Nie ma w dostępnym piśmiennictwie danych dotyczących przewlekłego działania ortokrzemianu tetraetylu u ludzi. Ostra toksyczność ortokrzemianu tetraetylu u zwierząt doświadczalnych wyrażona medialnymi dawkami letalnymi jest stosunkowo mała. Związek wykazuje łagodne działanie drażniące na oczy królika. Nie ma danych dotyczących toksyczności przewlekłej ortokrzemianu tetraetylu. W badaniach krótkoterminowych i podprzewlekłych na myszach i szczurach narażonych na ortokrzemian tetraetylu inhalacyjnie oraz po podaniu innymi drogami wykazano oprócz zmian martwiczych w nabłonku węchowym jamy nosowej także zmiany w wątrobie oraz nerkach, które obejmowały śródmiąższowe zapalenie nerek i zmiany martwicze w kanalikach nerkowych. W przypadku krótkoterminowego narażenia na ortokrzemianu tetraetylu o dużych stężeniach u zwierząt doświadczalnych obserwowano również działanie toksyczne związku na płuca (obrzęk płuc, nacieczenia leukocytów oraz wybroczyny krwawe w pęcherzykach płucnych i oskrzelach). Ortokrzemianu tetraetylu nie wykazywał działania mutagennego w testach Amesa. W dostępnym piśmiennictwie nie znaleziono także danych na temat jego działania embriotoksycznego, fetotoksycznego i teratogennego. Związek nie jest klasyfikowany przez IARC pod względem działania rakotwórczego. Z przedstawionych w dokumentacji danych wynika, że głównym skutkiem działania toksycznego u ludzi ortokrzemianu tetraetylu o dużych stężeniach (powyżej 2000 mg/m3) było działanie drażniące na oczy i błonę śluzową nosa, natomiast w przypadku zwierząt doświadczalnych działanie nefrotoksyczne oraz uszkodzenie nabłonka węchowego jamy nosowej. Za podstawę do obliczenia wartości NDS ortokrzemianu tetraetylu przyjęto jego działanie nefrotoksyczne. Narażenie inhalacyjne przez 90 dni szczurów, królików i świnek morskich na ortokrzemian tetraetylu o stężeniach: 199; 432 lub 760 mg/m3 nie wykazało żadnych zmian narządowych, co pozwoliło na przyjęcie stężenia 760 mg/m3 za wartość NOAEL. W innym doświadczeniu przeprowadzonym na szczurach narażanych przez 28 dni drogą inhalacyjną na działanie ortokrzemianu tetraetylu o stężeniu 850 mg/m3 wykazano jego działanie nefrotoksyczne, które manifestowało się śródmiąższowym zapaleniem nerek oraz zmianami martwiczymi w kanalikach nerkowych. Po przyjęciu odpowiednich współczynników niepewności oraz stężenia 760 mg/m3 za wartość NOAEL, wyliczona wartość NDS ortokrzemianu tetraetylu wynosi 95 mg/m3. W Polsce obowiązująca wartość NDS ortokrzemianu tetraetylu wynosi 80 mg/m3. W państwach Unii Europejskiej, a także w większości państw poza Unią, obowiązujące wartości NDS ortokrzemianu tetraetylu wynoszą 85 lub 87 mg/m3. Wobec stosunkowo niewielkiej różnicy między wartością obliczoną (95 mg/m3) a wartością dotychczas obowiązującą, proponujemy zachować wartość NDS ortokrzemianu tetraetylu na dotychczasowym poziomie, tj. wynoszącą 80 mg/m3. Zaproponowana wartość NDS ortokrzemianu tetraetylu powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym. Ze względu na wysoki próg działania drażniącego na oczy i błony śluzowe u ludzi należy uznać, że przyjęta wartość zabezpieczy także przed działaniem drażniącym związku. Normatyw jest oznaczony literą „I”, ponieważ jest to substancja o działaniu drażniącym. Nie ma podstaw do przyjęcia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB) ortokrzemianu tetraetylu.
Ethyl silicate is a colorless liquid with a slightly perceptible odor. This compound finds numerous applications in a number of industrial branches, e.g., paint and lacquer, chemical or pharmaceutical. It is also used as an agent to harden natural stone, terracotta, artificial marble, frescoes and clay as well as a water- and acid-resisting solvent applied in cement and masonry mortar in brick production. Ethyl silicate is well absorbed via respiratory and alimentary tracts, but its absorption through the skin is rather weak. In ethyl silicate-exposed workers, eye and nasal mucosa irritating properties of this compound have been observed. Data on chronic ethyl silicate effects in humans are not available in the literature. In laboratory animals, ethyl silicate’s acute toxicity, expressed in median lethal doses, is relatively low. Ethyl silicate shows a mild irritating effect on rabbits’ eyes. There is no data on ethyl silicate’s chronic toxicity. In short-term, sub-chronic studies performed on mice and rats exposed to ethyl silicate through inhalation and after its administration in other ways, along with necrotic lesions in the olfactory epithelium of the nasal cavity, there were changes in the liver and kidneys. The latter comprised interstitial inflammation and necrotic lesions in renal tubules. Short-term exposure of laboratory animals to high ethyl silicate doses induced its toxic effect on the lungs (pulmonary edema, leukocyte infiltration, petechia in pulmonary alveoli, and bronchial tubes). Ethyl silicate’s mutagenic effect has not been revealed in the Ames test. No data on embryotoxic, phototoxic, and teratogenic effects of ethyl silicate are available in the literature. This compound has not been categorized by the International Agency for Research on Cancer (IARC) with respect to its potential carcinogenic risk. The presented evidence shows that the major toxic effect of ethyl silicate at its high concentrations (over 2000 mg/m3) is eye and nasal mucosa irritation in humans, whereas the nephrotoxic effect and damage to the olfactory epithelium of the nasal cavity are observed in laboratory animals. On the basis of the nephrotoxic effect of ethyl silicate, its maximum allowable concentration (MAC) was calculated. Inhalation exposure of rats, rabbits and guinea pigs to ethyl silicate at concentrations of 199, 432, and 760 mg/m3 for 90 days did not reveal any organic changes, which has made it possible to adopt the concentration of 760 mg/m3 as the value of no observed adverse effect level (NOAEL). Another experiment performed on rats exposed via inhalation to this compound at the concentration of 850 mg/m3 for 28 days revealed its nephrotoxic effect manifestem by interstitial kidney inflammation and necrotic lesions in renal tubules After adopting relevant uncertainty coefficients and the concentration of 760 mg/m3 as the NOAEL value, the calculated MAC value for ethyl silicate is 95 mg/m3. In Poland, the binding MAC value for ethyl silicate is 80 mg/m3, whereas in other countries of the European Union (EU) and in most outside the EU, MAC values are kept at the level of 85 – 87 mg/m3. In view of the relatively small difference between the calculated value (95 mg/m3) and that binding to date, it is proposed to keep the MAC value at the present level, i.e., 80 mg/m3. The proposed MAC value should protect workers against the potential systemic ethyl silicate effect. Bearing in mind the high threshold of its irritating effect on eyes and mucous membrane in humans, it should be assumed that the adopted MAC value will also be effective in this case. There are no grounds for adopting MAC (STEL) and BEI values for this compound.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 3 (53); 75-89
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chlorek benzoilu
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138038.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
chlorek benzoilu
toksyczność
narażenie zawodowe
NDSP
benzoyl chloride
toxicity
occupational exposure
TLV-Ceiling
Opis:
Chlorek benzoilu jest bezbarwną cieczą o ostrym, gryzącym zapachu. Został sklasyfikowany jako substancja żrąca. Produkcja chlorku benzoilu jest wielko tonażowa. W 1995 r. chlorek benzoilu produkowano w jedenastu państwach, nie ma informacji na temat produkcji tego związku w Polsce. Chlorek benzoilu jest stosowany do: produkcji nadtlenku benzoilu i barwników oraz acylacji alkoholi, fenoli i amin, a także używa się go jako odczynnika analitycznego. Pary chlorku benzoilu wykazują silne działanie drażniące oczy i błony śluzowe. Narażenie na chlorek benzoilu o stężeniu 11,5 mg/m3 (2 ppm) przez 1 min jest przez ludzi nietolerowane. Badania epidemiologiczne, w których wykazano nadwyżkę zgonów z powodu raka płuc, zostały przeprowadzone wśród pracowników zatrudnionych przy produkcji chlorowanych toluenów oraz chlorku benzoilu. W procesie tym występuje łączne narażenie na szereg związków chemicznych, w szczególności na trichloro(fenylo)metan, który jest uważany za związek rakotwórczy. U szczurów narażanych inhalacyjnie chlorek benzoilu wykazywał działanie drażniące na błony śluzowe oczu i nosa oraz wywoływał rozedmę płuc. Chlorek benzoilu działał drażniąco i żrąco na skórę, a także wykazywał działanie żrące po wkropleniu do oka królików. Na podstawie wyników większości przeprowadzonych badań w warunkach in vitro i in vivo nie wykazano działania mutagennego chlorku benzoilu. Działanie rakotwórcze chlorku benzoilu na zwierzęta badano po narażeniu inhalacyjnym, a także po aplikacji na skórę. Nie stwierdzono istotnego wzrostu częstości występowania nowotworów płuc i skory w porównaniu ze zwierzętami z grupy kontrolnej. W IARC uznano, że istnieje ograniczony dowód na rakotwórcze działanie chlorku benzoilu u ludzi, a w przypadku zwierząt doświadczalnych dowody działania rakotwórczego chlorku benzoilu są niewystarczające. W ogólnej ocenie IARC stwierdzono, że łączne narażenie na α-chlorowane tolueny i chlorek benzoilu jest prawdopodobnie rakotwórcze dla ludzi – grupa 2.A. W ACGIH uznano chlorek benzoilu za związek niepodlegający klasyfikacji jako kancerogen dla ludzi (grupa A4.). Brak jest danych dotyczących toksyczności rozwojowej oraz wpływu na rozrodczość chlorku benzoilu dla zwierząt i ludzi. Za krytyczne skutki działania chlorku benzoilu uznano jego działanie drażniące na oczy i błony śluzowe górnych dróg oddechowych. Za podstawę do wyprowadzenia wartości najwyższego dopuszczalnego stężenia (NDS) chlorku benzoilu przyjęto informację podaną przez ACGIH, że narażenie na chlorek benzoilu o stężeniu 11,5 mg/m3 (2 ppm) przez 1 min jest już przez ludzi nietolerowane. Stężenie 11,5 mg/m3 uznano za wartość LOAEL. Po zastosowaniu współczynników niepewności o łącznej wartości 4 otrzymano wartość NDS wynoszącą 2,8 mg/m3. Ponieważ chlorek benzoilu wykazuje silne działanie drażniące na drogi oddechowe, zaproponowano przyjęcie, zamiast wartości NDS, wartość najwyższego dopuszczalnego stężenia pułapowego (NDSP) równą 2,8 mg/m3. Zaproponowana wartość NDSP powinna zabezpieczyć pracowników przed potencjalnym działaniem drażniącym i układowym chlorku benzoilu. Normatyw oznakowano literą „C”– substancja o działaniu żrącym.
Benzoyl chloride is a colorless liquid with a characteristic pungent odor classified as a corrosive substance. Benzoyl chlorite is produced in high tonnages. In 1995 it was produced in 11 countries. There is no information on its production in Poland. Benzoyl chloride is used in the production of benzoyl peroxide and dyes, as well as in the acylation of alcohols, phenols and amines, and also as an analytical reagent. Vapors of benzoyl chloride exert strong irritating effects on the eyes and mucous membranes. Exposure to benzoyl chloride at a concentration of 11.5 mg/m3 (2 ppm) for 1 min is not tolerable to humans. Epidemiological studies of workers employed in the production of chlorinated toluenes and benzoyl chloride have revealed excess mortality from lung cancer in this group of workers. These production processes involve a combined exposure to a number of chemical compounds, mainly to benzotrichloride thought to be a carcinogenic compound. Benzoyl chloride showed irritating effects on ocular and nasal mucous membranes and induced pulmonary emphysema in rats exposed to this compound via inhalation. Its irritating and corrosive effects on the skin and corrosive effect on the eye were also observed in rabbits. Most in vitro and in vivo studies have not reveal mutagenic effects of benzoyl chloride. The carcinogenic effect of benzoyl chloride has been investigated in animals after inhalation exposure and skin application, yet no significant increase in the incidence of lung and skin cancers, compared with the control group, has been observed. According to the International Agency for Research on Cancer (IARC) there is limited evidence that benzoyl chloride is carcinogenic in humans; there is insufficient evidence in laboratory animals. In the general assessment IARC has found that the combined exposure to α-chlorinated toluenes and benzoyl chloride is probably carcinogenic to humans (group 2A). Benzoyl chloride has been not classifiable as a human carcinogen by the American Conference of Governmental Industrial Hygienists (ACGIH) (group 4A). No data are available to assess the effect of benzoyl chloride on reproduction and developmental toxicity in humans or animals. Irritation of the eyes and mucous membranes in the upper respiratory tract has been recognized as a critical effect of benzoyl chloride. The finding reported by ACGIH that exposure to benzoyl chloride already in a concentration of 11.5 mg/m3 (2 pmm) for 1 min is not tolerable to humans has been adopted as the basis for calculating the MAC value for this substance. The concentration of 11.5 mg/m3 has been recognized as the LOAEL value. Using uncertainty coefficients at the total value of 4, the MAC value of 2.8 mg/m3 was obtained. Owing to the fact that benzoyl chloride exerts a strong irritating effect on the respiratory system, it has been suggested to adopt the value of the maximum admissible ceiling concentration (TLV-ceiling) equal to 2.8 mg/m3 instead of a MAC value. The proposed TLV-ceiling value should protect workers from potential irritating and systemic effects of benzoyl chloride. Standard was denoted “C”, substance with corrosive effect.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 2 (72); 31-44
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
But-2-enal – mieszanina izomerów – E-but-2-enal i Z-but-2-enal : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
But-2-enal – mixture of Z (cis) and E (trans) isomers : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Kilanowicz, A.
Sapota, A.
Daragó, A.
Powiązania:
https://bibliotekanauki.pl/articles/137364.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
but-2-enal
aldehyd krotonowy
toksyczność
narażenie zawodowe
NDS
crotonaldehyde
toxicity
occupational exposure
MAC
Opis:
But-2-enal (aldehyd krotonowy) jest bezbarwną cieczą o ostrym, nieprzyjemnym zapachu. W handlu jest dostępny zazwyczaj jako mieszanina izomerów –Z cis) iE(trans),o przewadze izomeruE ≥ 90%. Ze względu na łatwo wyczuwalny i charakterystyczny ostry zapach, but-2-enal był dodawany do gazów opałowych jako środek ostrzegawczy (marker) do wykrywania wycieków i nieszczelności linii przesyłowych. Obecnie but-2-enal stosuje się głównie do wytwarzania kwasu sorbowego (kwas trans-heksa-2,4-dienowy), środka konserwującego żywność. Według danych Głównego Inspektoratu Sanitarnego w latach 2013-2014 w Polsce nie było pracowników zatrudnionych na stanowiskach pracy, gdzie występowało przekroczenie obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS = 6 mg/m3, tj. 0,6 mg/m3) dla but-2-enalu. But-2-enal wchłania się dobrze do organizmu przez: drogi oddechowe, przewód pokarmowy oraz przez skórę. Ze względu na bardzo ostry, drażniący zapach but-2-enalu nie opisano przypadków ostrego zatrucia ludzi tym związkiem. U ochotników oraz pracowników narażonych na but-2-enal obserwowano działanie drażniące związku na oczy i błonę śluzową nosa. Nie ma w dostępnym piśmiennictwie danych dotyczących przewlekłego działania but-2-enalu na ludzi. Wyrażona medianami dawek letalnych ostra toksyczność but-2-enalu, którego działaniu poddano zwierzęta doświadczalne, pozwala zaklasyfikować związek jako toksyczny. Związek wykazuje silne działanie drażniące na: oczy, błonę śluzową nosa oraz drogi oddechowe. Nie ma w dostępnym piśmiennictwie danych dotyczących działania drażniącego oraz uczulającego związku na skórę zwierząt. W badaniach krótkoterminowych i podprzewlekłych na myszach i szczurach narażonych przez 13 tygodni na związek drogą dożołądkową wykazano głównie zmiany w przedżołądku, które obejmowały pogrubienie błony śluzowej przedżołądka ze zmianami grudkowatymi (tylko u szczurów) oraz cechy ostrego zapalenia. Natomiast w badaniu przewlekłym (113 tygodni) u szczurów, którym but-2-enal podawano w wodzie do picia, stwierdzono, niezależnie od wielkości dawki, zmiany nowotworowe w wątrobie i zmiany ogniskowe w komórkach wątroby. Skutków takich nie stwierdzono u szczurów narażonych na dwie większe dawki. But-2-enal nie wykazywał działania mutagennego w testach Amesa. Związek działał genotoksycznie, np. tworzył addukty z DNA. Na podstawie nielicznych danych wykazano, że but-2-enal działa szkodliwie na komórki rozrodcze. Związek nie jest klasyfikowany przez IARC ze względu na działanie rakotwórcze. Z przedstawionych w dokumentacji danych wynika, że głównym skutkiem działania toksycznego but-2-enalu o dużych stężeniach na ludzi i zwierzęta było silne działanie drażniące na oczy i błonę śluzową nosa, natomiast w przypadku zwierząt doświadczalnych także na drogi oddechowe. Za podstawę obliczenia wartości najwyższego dopuszczalnego stężenia (NDS) but-2-enalu (mieszaniny izomerów) oraz izomerów Z(cis) i E(trans) przyjęto niski próg detekcji zapachu (wartość OT50 » 0,20 mg/m3), a także wyniki badania, w którym oceniano częstość oddechów u dwóch szczepów myszy. Uzyskane wartości RD50 różniły się nieznacznie. Do ustalenia wartości NDS przyjęto 1/10 wartości RD50 wynoszącej 10,05 mg/m3 (3,5 ppm), tj. 1 mg/m3. But-2-enal jest substancją o silnym działaniu drażniącym, więc wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) zaproponowano na poziomie 2 mg/m3. Zmniejszenie obowiązujących wartości dla but-2-enalu (mieszaniny izomerów) jest także uzasadnione działaniem genotoksycznym związku oraz prawdopodobnie rakotwórczym na zwierzęta doświadczalne, co było przyczyną nieustalenia wartości normatywnej przez SCOEL i MAK. Normatyw oznakowano „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy na-rażeniu drogą oddechową oraz literą „I” – substancja o działaniu drażniącym.
But-2-enal (crotonaldehyde) is a colourless liquid with a sharp odour. In commerce it is usually available as a mixture of Z (cis) and E (trans) isomers (with a predominance of an E isomer over 90%). Due to its easily recognizable and distinctive odour, but-2-enal was added to fuel gases as a marker to detect leakage and leakiness in transmission lines. Currently, but-2-enal is mainly used in the production of sorbic acid (trans, trans-2,4- -hexadienoic acid), a food preservative. According to the data of the Chief Sanitary Inspectorate, in Poland in the years 2013-2014, there were no workers exposed to but-2-enal in concentrations exceeding 0.1 TLV (Threshold Limit Value, TLV = 6 mg/m3 ), i.e. 0.6 mg/m3 . But-2-enal is well absorbed into the body by inhalation, through the skin and by ingestion. Because of the very sharp, irritating scent of but-2-enal, no cases of acute poisoning have been reported in humans. Volunteers and workers exposed to but-2- -enal suffered from irritating effects on eyes and nasal mucosa. There are no available data on chronic exposure of but-2-enal in humans. Acute toxicity of but-2-enal in experimental animals expressed in lethal dose mediators enable to classify this compound as toxic. It exhibits strong irritating effects on eyes, nasal mucous membranes and respiratory tract. There are no data on skin irritation and sensitization. In short-term and subchronic studies in mice and rats exposed intragastrically to but-2-enal for 13 weeks, predominant changes associated with the administration route were moted in the forestomach, including thickening of gastric mucosa with rickets (only in rats) and acute inflammation. Subchronic study (113 weeks) in rats, where but-2-enal was administered in drinking water (only at the lowest dose) resulted in tumours in liver and focal lesions in the liver cells. These effects have not been reported in rats exposed to two higher doses. But-2-enal was not mutagenic in Ames tests, but was genotoxic, e.g., caused DNA adducts. Few data indicate that but-2-enal has harmful effects on germ cells. The compound is not classified by IARC in terms of carcinogenicity. The major toxic effect of but-2-enal toxicity in humans and animals was a strong irritation to eyes and nasal mucosa. Irritation of respiratory tract in animals was also observed. As a basis for calculating TLV for but-2-enal (mixture of isomers), and Z (cis) and E (trans) isomers, the low odour detection threshold (OT50 0.20 mg/m3 ) was adopted. Moreover, results of study assessing respiratory rate in two mouse strains, where only slight differences in RD50 was noted, was taken into account. One tenth of the value of 10.05 mg/m3 (3.5 ppm), i.e., 1 mg/m3 , was used to determine the TLV. But-2-enal is strongly irritant, so the STEL (Short-Term Exposure Limit) value was proposed at 2 mg/m3 . The reduction of valid values for but- 2-enal (mixture of isomers) is also justified by the genotoxicity of the compound and possible carcinogenicity in experimental animals (which was due to the non-normative value of SCOEL and MAK). Norms are labelled with "skin" (absorption of the substance through the skin can be as important as exposure to the respiratory tract) and the letter "I" (irritant).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 4 (94); 5-33
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies