- Tytuł:
-
Akrylamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Acrylamide. Documentation of suggested occupational exposure limits (OELs) - Autorzy:
-
Sapota, A.
Skrzypińska-Gawrysiak, M - Powiązania:
- https://bibliotekanauki.pl/articles/958185.pdf
- Data publikacji:
- 2014
- Wydawca:
- Centralny Instytut Ochrony Pracy
- Tematy:
-
akrylamid
toksyczność
narażenie zawodowe
NDS
acrylamide
toxicity
occupational exposure
MAC - Opis:
-
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), występuje też w dymie papierosowym. Akrylamid jest sklasyfikowany jako substancja: toksyczna, stwarzająca poważne zagrożenie zdrowia w następstwie długotrwałego narażenia przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Akrylamid jest mutagenem kategorii 2. (1B) i związkiem rakotwórczym kategorii 2. (1B), działa szkodliwie na rozrodczość, a także drażniąco na oczy i skórę, może wywoływać reakcję uczuleniową skóry.Produkcja akrylamidu jest wielkotonażowa. Stosowany jest głównie do: syntezy poliakrylamidów stosowanych w procesach oczyszczania ścieków, produkcji papieru, przerobie rud, wytwarzaniu polimerów winylowych oraz jako szczeliwo podczas budowy zapór wodnych i tuneli. Żel poliakrylamidowy wykorzystuje się w procesie elektroforezy (PAGE) powszechnie stosowanej w wielu laboratoriach. Zawodowe narażenie na akrylamid może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także stosowania związku w pracach budowlanych czy montażowych (np.: budowa tuneli, naprawa kanalizacji). Narażenie na akrylamid w Polsce występuje głównie w: zakładach chemicznych, farmaceutycznych oraz laboratoriach instytutów badawczych i uczelni wyższych.W Polsce w latach 2005-2010 ponad 2000 osób było narażonych na akrylamid (2525 osób w 2010 r.), z czego większość stanowiły kobiety. W latach 2011-2012 (wg danych GIS) nie było pracowników narażonych na stężenia akrylamidu w powietrzu, powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. powyżej 0,01 mg/m³. Akrylamid wykazuje działanie neurotoksyczne. Kliniczny obraz ostrego i przewlekłego zatrucia u ludzi jest podobny, a dominującymi są takie objawy neuropatii obwodowej, jak: utrata czucia, parestezje (drętwienie/mrowienie dłoni i stóp), osłabienie mięśniowe oraz osłabienie odruchów ścięgnistych. Mogą ponadto wystąpić drżenia rąk i chwiejny chód, zmniejszenie wrażliwości na światło i zdolność rozróżniania barw. Objawy neuropatii obwodowej obserwowano istotnie częściej u pracowników, gdy stężenia akrylamidu na stanowiskach pracy wynosiły powyżej 0,3 mg/m³. W badaniach monitoringu biologicznego (addukty akrylamid z hemoglobiną, AA-Hb) pracowników narażonych na akrylamid ustalono wartość NOAEL dla objawów drętwienia/mrowienia rąk/stóp na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu 0,1 mg/m³. U osób narażonych na akrylamid obserwowano także zapalenie skóry, objawiające się jej łuszczeniem, głównie na dłoniach. Na podstawie wyników badań toksyczności ostrej akrylamidu na zwierzętach wykazano, niezależnie od drogi narażenia, wystąpienie objawów neurotoksyczności. W dostępnym piśmiennictwie nie ma informacji o długoterminowych badaniach inhalacyjnych na zwierzętach. W badaniach podprzewlekłych i przewlekłych (po narażeniu drogą pokarmową lub dootrzewnową) obserwowano głównie neurotoksyczne działanie związku. Klinicznymi objawami narażenia zwierząt na akrylamid były zaburzenia koordynacji ruchowej i chodu oraz osłabienie kończyn tylnych prowadzące do paraliżu. U zwierząt w badaniach histopatologicznych stwierdzano głównie zwyrodnienie aksonów i komórek Schwanna w nerwach obwodowych i w rdzeniu kręgowym. Dla szczurów ustalono wartość NOAEL dla chronicznej neurotoksyczności na poziomie 0,5 mg/kg mc./ dzień. Akrylamid powodował zmiany patologiczne w narządach rozrodczych samców (zwyrodnienie nabłonka rozrodczego w jądrach i przewodach nasiennych, złuszczanie komórek rozrodczych w najądrzach oraz atrofię jąder). Standardowe testy na bakteriach nie wykazały zdolności akrylamidu do indukowania mutacji punktowych. Badanie mutacji genowych na komórkach ssaków w warunkach in vitro dały wynik niejednoznaczny. Niektórzy badacze przypuszczają, że aktywność akrylamidu może być związana z działaniem klastogennym (uszkodzenie chromosomu wyrażone jego złamaniem, co może prowadzić do zmiany organizacji struktury chromosomu wskutek nieprawidłowego połączenia się jego fragmentów w nową konfigurację). Akrylamid indukował aberracje chromosomowe, powodował poliploidalność i zaburzenia wrzeciona, co wskazuje na jego działanie aneuploidalne (obecność w komórce nieprawidłowej liczby chromosomów). Akrylamid powodował uszkodzenia DNA oraz nieplanową syntezę DNA, a także tworzył addukty z DNA oraz indukował wymianę chromatyd siostrzanych. Badania w warunkach in vivo dały dodatnie wyniki dla: aberracji chromosomowych, tworzenia mikrojąder i aneuploidii w szpiku kostnym, co sugeruje, że akrylamid jest bezpośrednio działającym mutagenem, ale prawdopodobnie powoduje skutek klastogenny, a nie mutacje genowe. Akrylamid wykazywał działanie mutagenne w komórkach rozrodczych samców. Wyniki dodatnie otrzymano dla skutków obejmujących: aberracje chromo-somowe, tworzenie mikrojąder, wymianę chromatyd siostrzanych, nieplanową syntezę DNA, dominujące mutacje letalne i dziedziczne translokacje. Za działanie mutagenne akrylamidu może być odpowiedzialny metabolit, glicydamid, który zarówno w badaniach przeprowadzonych w warunkach in vitro, jak in vivo powodował działanie mutagenne i genotoksyczne. Akrylamid działał rakotwórczo na szczury i myszy. U zwierząt w badaniach przewlekłych wykazano wzrost częstości występowania nowotworów u szczurów: tarczycy, jąder, gruczołów sutkowych, trzustki, serca, jamy ustnej i skóry, być może także ośrodkowego układu nerwowego (OUN) oraz u myszy: gruczołu Hardera, płuc, sutka, jajników oraz przedżołądka. Podobne działanie wykazywał także metabolit związku – glicydamid. Badania epidemiologiczne ludzi narażonych zawodowo, jak i środowiskowo (na akrylamid w diecie) nie dają jasnego obrazu zależności narażenia na związek a występowania nowotworów. W IARC zaklasyfikowano akrylamid do grupy 2A (substancja prawdopodobnie rakotwórcza dla ludzi), SCOEL zaliczył związek do grupy B rakotwórczości (genotoksyczne kancerogeny, dla których istniejące dane są niewystarczające do zastosowania modelu LNT). W badaniach na zwierzętach stwierdzono szkodliwy wpływ akrylamidu na płodność samców: zmniejszenie liczby plemników, zmiany morfologiczne nasienia, zaburzenia zachowań kopulacyjnych, dominujące mutacje letalne. U potomstwa samców narażonych na akrylamid stwierdzono zwiększenie resorpcji płodów i zmniejszenie liczebności miotów (skutek mutacji letalnych). Akrylamid nie wpływał na rozrodczość u samic. W badaniach toksyczności rozwojowej większość objawów u potomstwa obserwowano po dawkach akrylamidu powodujących toksyczność matczyną. Akrylamid dobrze wchłania się: drogą inhalacyjną, pokarmową (do 98% u szczurów, do 44% u myszy) i w mniejszym stopniu przez skórę; wiąże się specyficznie z krwinkami czerwonymi oraz spermatydami i przenika przez barierę łożyska. Akrylamid jest szybko metabolizowany przez sprzęganie z glutationem lub utlenianie przy udziale CYP2E1. Ten drugi szlak metaboliczny prowadzi do powstania epoksydowej pochodnej – glicydamidu (GA). Zarówno akrylamid, jak i GA wiążą się z hemoglobiną i/lub DNA. Akrylamid i jego metabolity ulegają wydalaniu z moczem. U ludzi po podaniu doustnym wydalało się z moczem w ciągu doby około 50% podanej dawki. Okres połowicznego wydalania oszacowano na około 3 h. Addukty hemoglobiny z akrylamidem i glicydamidem oraz metabolity obecne w moczu mogą służyć jako biomarkery narażenia na akrylamid. Za podstawę do zaproponowania wartości NDS akrylamidu przyjęto jego działanie neurotoksyczne na ludzi. U pracowników narażonych zawodowo na akrylamid o stężeniu przekraczającym 0,3 mg/m³ istotnie częściej występowało drętwienie dłoni i stóp niż w grupie pracowników narażonych na akrylamid o stężeniu poniżej 0,3 mg/m³. W celu ustalenia wartości NDS akrylamidu z wartości NOAEL 0,1 mg/m³ przyjęto jeden współczynnik niepewności związany z różnicami wrażliwości osobniczej u ludzi. Ilościowa ekstrapolacja wyników badań działania rakotwórczego związku u zwierząt na ludzi jest praktycznie niemożliwa, gdyż na powstawanie nowotworów obserwowanych u szczurów istotny wpływ mają czynniki specyficzne dla tego gatunku. Obliczona wartość NDS akrylamidu wynosi 0,05 mg/m³. Dla państw członkowskich UE istotne znaczenie mają wartości wiążące BOELV, a dla akrylamidu Komitet Doradczy ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH) przyjął w 2012 r. propozycję wartości BOELV w zakresie stężeń 0,07 ÷ 0,1 mg/m³. W Niemczech dla ryzyka akceptowanego 4-10-4 zaproponowano wartość dopuszczalną dla akrylamidu na poziomie 0,07 mg/m³. Biorąc pod uwagę powyższe ustalenia, zaproponowano przyjęcie stężenia 0,07 mg/m³ za wartość NDS akrylamidu. Ze względu na wchłanianie akrylamidu przez skórę związek oznakowano literami “Sk”. W badaniach pracowników narażonych na akrylamid stwierdzono wyraźną zależność między poziomem adduktów akrylamidu z hemoglobiną (N-(2-karbamoiloetylo)-waliny, AA-Hb) a występowaniem objawów ze strony obwodowego układu nerwowego. Dla objawów drętwienia/mrowienia stóp lub nóg (najwcześniej występujących) ustalono wartość NOAEL na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu około 0,1 mg/m³. Jest to obowiązująca wartości NDS dla akrylamidu w Polsce. Do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym dla akrylamidu we krwi przyjęto stężenia adduktów akrylamidu z hemoglobiną. W Niemczech przyjęto dwie wartości: BLW (biologischer leitwert – dopuszczalna wartość biologiczna) na poziomie 550 pmol AA-Val/g globiny oraz BAR (biologischer arbeitsstoff-referenzwert – biologiczna wartość referencyjna) na poziomie 50 pmol AA-Val/g globiny. W SCOEL ustalono wartość wyjściową BGV dla niepalącej populacji generalnej na poziomie 80 pmol AA-Val/g globiny. Żadna z tych wartości nie była porównywana z wartościami dopuszczalnych stężeń akrylamidu w powietrzu na stanowiskach pracy, których zarówno w SCOEL, jak i w Niemczech dla akrylamidu nie ustalono.Ze względu na dużą zmienność stężeń adduktów akrylamidu z hemoglobiną w populacji nienarażonej zawodowo na akrylamid, a także fakt, że pomiar adduktów z hemoglobiną jest metodą inwazyjną, wymagającą ponadto wyspecjalizowanej aparatury, zrezygnowano z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla akrylamidu.
Acrylamide (AA) is a chemical compound that occurs at room temperature in the form of colorless crystals or flakes. It is not found in the natural environment, but it can be produced in thermal food processes (frying, baking). It is also present in cigarette smoke. Acrylamide is categorized as a toxic substance that poses substantial health risk after long-term exposure via inhalation, ingestion or skin contact. It is a category 2 (IB) mutagen and category 2 (IB) carcinogen. AA is known to induce adverse effects on reproduction, eye irritation and allergic skin reactions. Acrylamide is produced in multitonnage quantities. It is mostly used to synthesize polyacrylamides applied in wastewater treatment, manufacturing paper, processing ore, manufacturing vinyl polymers; it is also used as a grouting agent in constructing dams and tunnels. Polyacrylamide gel is utilized in the process of electrophoresis (PAGE) commonly used in numerous laboratories.Occupational exposure to acrylamide may occur during the production, processing and distribution of this compound and also during its application in construction and assembly works (e.g., construction of tunnels, sewer grouting work). In Poland occupational exposure to acrylamide is observed in chemical and pharmaceutical plants as well as in laboratories of research institutes and tertiary education schools. Over 2000 workers (mostly women) were exposed to this compound in the years 2005-2010 (2525 workers in 2010). According to the data produced by the Chief Sanitary Inspectorate in 2011 and 2012 there were no workers exposed to acrylamide at levels exceeding maximum allowable concentration (MAC) in the air, namely over 0.01 mg/m3. Acrylamide is found to exert neurotoxic effects. Clinical symptoms of acute and chronic poisoning are similar in humans, and symptoms of peripheral neuropathy, such as loss of sensation, paresthesia (numbness/ tingling in hands and feet), reduced muscle tone and diminished tendon reflexes are most common. In addition, hand tremors and unsteady gait, diminished sensitivity to light and inability to distinguish colors can be ob-served. Peripheral neuropathy symptoms were significantly more frequent in workers exposed to A A concentrations exceeding 0.3 mg/m3. Based on the biological monitoring (acrylamide adducts with hemoglobin, AA-Hb) of AA-exposed w’orkers no-observed adverse effect level (NOAEL) for numbness/tingling in hands/ feet has been set at 0.51 nmol AA-Hb/g globin. This value corresponds to the air AA concentration of 0.1 mg/m3. In w'orkers exposed to this compound dermatitis manifested by skin peeling, mostly in the palm, is also observed. The results of animal studies on acute AA toxicity have revealed symptoms of neurotoxicity, regardless of the exposure route. In the available literature there is no information about long-term inhalation studies on animals. Subchronic and chronic studies (after intraperitoneal and ingestion exposure) showed mainly neurotoxic effect of this compound. Clinical symptoms of animal AA exposure were manifested by incoordination, unsteady gait and diminished strength of hind limbs leading to paralysis. Histopathological examinations of animals most frequently showed degenerated axons and Schwann cells in the spinal cord and peripheral nerves. The NOAEL value for chronic neurotoxicity in rats has been set at 0.5 mg/kg b.w./day. Acrylamide induced male reproductive pathology (degeneration of the germinal epithelium in testes and seminiferous tubules, exfoliation of germ cells in the epididymis and atrophy of testes). Standard bacteria testing show'ed lack of AA ability to induce point mutations. The in vitro study of gene mutations on mammal cells yielded controversial results. Some researchers suppose that the AA activity’ may be associated with the clastogenic effect (a broken chromosome, which may lead to chromosome reorganization due to incorrect coupling of its fragments into a new configuration). Acryla- rnide induced chromosome aberrations, polyploidy and spindle disorders, which indicates its aneuploidal effect (the incorrect number of chromosomes in the cell). Acrylamide was responsible for DNA damage, unscheduled DNA synthesis, production of DNA adducts and induction of sister chromatid exchange. In vivo studies yielded positive results for chromosome aberration, production of micronuclei and aneu- ploidy in bone marrow, which suggests that acrylamide is a mutagen characterized by direct action, however, it is most likely that it exerts the clastogenic effect, but not gene mutations. Acrylamide showed the mutagenic effect in male reproductive cells. Positive results wrere obtained for such effects as chromosome aberra-tions, production of micronuclei, sister chromatid exchange, unscheduled DNA synthesis, dominant lethal mutations and hereditary trans-locations. It is likely that metabolite glycidam- ide, which exerts mutagenic and genotoxic effects in both in vivo and in vitro studies, is re-sponsible for the mutagenic effect of acrylamide. Acrylamide was found to show a carcinogenic effect in rats and mice. Animal chronic studies revealed an increased incidence of cancers of thyroid, testes, mammary7 glands, pancreas, heart, oral cavity and skin and maybe also of the central nervous system (CNS) in rats as well as cancers of the Harderian gland, lungs, mammary glands, ovaries and foreestomach in mice. Glicydamide, AA metabolite, showed a similar effect. Epidemiological studies of people occupationally and environmentally (diet) exposed to acrylamide have not provided explicit evidence of the relationship between AA exposure and cancer risk. Acrylamide has been classified into group 2A (the agent probably carcinogenic to humans) by the International Agency for Research on Cancer and to group B (genotoxic carcinogen, for which the existence of a threshold cannot be sufficiently supported at present) by the Scientific Committee on Occupational Exposure Limit (SCOEL). Animal studies have evidenced an adverse effect of acrylamide on male reproduction/fertility, including a reduced number of sperm cells, morphological changes in sperm, altered sexual behavior, dominant lethal mutations. An increased fetal resorption and decreased litter size (resulting from lethal mutations) wrere observed in the progeny of males exposed to acrylamide. No effect on re-production was found in females. In the studies of developmental toxicity the majority of symptoms were observed after administration of AA doses responsible for inducing maternal toxicity. Acrylamide is well absorbed via inhalation and ingestion (up to 98% in rats and up to 44% in mice), less absorbed through the skin; specifically bound to red blood cells and spermatids and permeats through the placental barrier. Acrylamide is rapidly metabolized through conjuga¬tion to glutathione or CYP2El-mediated oxidation. The latter metabolic pathway leads to the production of glycidamide (GA), an epoxy derivative. Both acrylamide and GA can bind to hemoglobin and/or DNA. Acrylamide and its metabolites are excreted in the urine. In humans 50% of an orally administered dose w7as excreted in the urine in 24 h. Excretion half-time is esti-mated at approximately 3 h. Hemoglobin ad¬ducts of acrylamide, glycidamide and urinary metabolites can serve as biomarkers of acrylamide exposure. The neurotoxic AA effect on humans has been adopted as the basis for the proposed MAC value of this compound. In workers occupationally exposed to acrylamide at the concentration exceeding 0.3 mg/m3 numbness in palms and feet was observed more frequently than in those exposed to lower concentrations (below 0.3 mg/m3). To establish a MAC value of acrylamide from the value of NO- AEL 0.1 mg/m3, one uncertainty coefficient, related to individual differences in human sensitivity, has been adopted. The qualitative extrapolation of results obtained from carcinogenicity studies in laboratory7 animals to humans is practically impossible since the development of cancers observed in rats is significantly influenced by species-specific factors. The calculated MAC value for acrylamide is 0.05 mg/m3. It should be stressed that in the European Union the binding occupational exposure level value (BOELV) is most important. In 2012 the Advisor} Committee for Safety and Health at Work (ACSH) accepted a proposal on BOELV for acrylamide concentration within the range of 0.07 - 0.1 mg/m3. Also in Germany MAC for acrylamide was proposed at 0.07 for acceptable risk 4 - 1CH. Bearing in mind the aforesaid stipulations MAC of 0.07 mg/m3 for acrylamide has finally been proposed. On account of acrylamide ab-sorption through the skin the standard value for the compound is labeled "Sk". Studies of w7orkers occupationally exposed to acrylamide showed explicitly a relationship between the level of acrylamide adducts with hemoglobin (N-(2- -carbamoylethyl)-valine, AA-Hb) and the occurrence of symptoms in the peripheral nervous system. For numbness/tingling in feet or legs (the most commonly observed symptoms) the NOAEL value has been set at 0.51 nmol AA-Hb/g glo- bin. This value corresponds to AA concentration in the air of 0.1 mg/m3. This is a binding MAC value for acrylamide in Poland. Concentrations of acrylamide adducts with hemoglobin have been adopted to estimate admissible value in the biological material for acrylamide in blood. In Germany two values have been adopted, BLW (biologischer leitwert, biological limit value) of 550 pmol AA-Val/g globin and BAR (biologischer arbeitsstoff-referenzetwert, biological reference value) of 50 pmol AA-Val/g globin. SCOEL adopted an initial BGV (biological guidance value) for the non-smoking general population, which was set at 80 pmol AA-Val/g globin. None of these values was comparable with MAC values for acrylamide in workplace air; neither SCOEL nor Germany established such values. In view of great variations in the concentration of acrylamide adducts with hemoglobin in the population non-occupationally exposed to acrylamide as well as the fact measuring hemoglobin adducts involves an invasive procedure that requires highly specialized equipment, the establishment of BEI for acrylamide has been abandoned. - Źródło:
-
Podstawy i Metody Oceny Środowiska Pracy; 2014, 2 (80); 5-71
1231-868X - Pojawia się w:
- Podstawy i Metody Oceny Środowiska Pracy
- Dostawca treści:
- Biblioteka Nauki