Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Santosh, ---" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Spatial Distribution of Rainfall with Elevation in Satluj River Basin: 1986-2010, Himachal Pradesh, India
Autorzy:
Kumar, Sandeep
Gil, G. S.
Santosh, Santosh
Powiązania:
https://bibliotekanauki.pl/articles/1193947.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
DEM
GIS
Himalayas
Interpolation
Orographic effect
Precipitation
Satluj River Basin
Opis:
The complex relationship between topography and precipitation in mountainous regions such as Himalayas is evident from the pattern of rainfall distribution. The variation in precipitation with altitude is controlled by mean height of clouds and decrease in water vapours with altitude. Spatially distributed measurements of precipitation have gained renewed interest in connection with climate change impact studies. Precipitation values are usually available from a limited number of gauge stations and their spatial estimates can be obtained by interpolation techniques such as Inverse Distance Weighted (IDW), Kriging and Spline. In the present study, precipitation-elevation relationship can be established using Digital Elevation Model (DEM) (Advanced Spaceborne Thermal Emission and Reflection Radiometer-ASTER, 30m resolution), Spline interpolation technique in Geographical Information System (GIS) environment and point data from various gauge stations spread over the Satluj River Basin. Changes of spatial distribution of precipitation with elevation show a distinct shift. Bhakra Dam (5854.60 mm) to Rampur (4451.10 mm), there is continuous variation in rainfall with increase in altitude. But beyond Rampur, variation is very high. Swarghat shows exceptional rainfall (8031.76 mm), may be due to position of mountains and their orographic effects. Maximum rainfall was observed in the lower Himalayas i.e. Shiwalik range. Negligible rainfall was observed beyond Kaza (470 mm), above the elevation of around 3756 m. The general trend of rainfall exhibits that the lower and middle parts experience good rainfall whereas the upper part experiences less rainfall. Such spatial and temporal distribution of rainfall with elevation provides an important platform for hydrologic analysis, planning and management of water resources.
Źródło:
World Scientific News; 2015, 19; 1-15
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trend analysis of rainfall in Satluj River Basin, Himachal Pradesh, India
Autorzy:
Kumar, Sandeep
Gill, G. S.
Santosh, Santosh
Powiązania:
https://bibliotekanauki.pl/articles/1193980.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Himachal Pradesh
Mann-Kendall test
Rainfall
Regression
Satluj River Basin
Trend analysis
Opis:
attention recently, especially in connection with climate change. The changing pattern of rainfall deserves urgent and systematic attention for planning, development, utilisation and management of water resources. The daily data on variable were converted to monthly and then computed to seasonal and annual series. Annual rainfall (mm/yr) was calculated as the sum of monthly values. The missing values in the data were computed by using average method. The records of rainfall were subjected to trend analysis by using both non-parametric (Mann-Kendall test) and parametric (linear regression analysis) procedures. For better understanding of the observed trends, data were computed into standardised precipitation indices (SPI). These standardised data series were plotted against time and the linear trends observed were represented graphically. Trend analysis results of rainfall show that out of 15 annual trends 6 (40%) are increasing and 9 (60%) are decreasing in nature where 1 (6.6%) is statistically significant (increasing) and 2 (13.3%) are statistically significant (decreasing) at 95% confidence level. Similarly, the changes were investigated for the four seasons: winter (December-March), pre-monsoon (April-June), monsoon (July-September) and post-monsoon (October-November). The analysis of rainfall, annual as well as seasonal, of different gauge stations in Satluj River Basin showed a large variability in the trends and magnitudes from 1984 to 2010. The rainfall shows great temporal and spatial variations, unequal seasonal distribution with frequent departures from normal. Majority of gauge stations have experienced decreasing trends, both on seasonal and annual scales. Some were statistically significant at 95% confidence level. The sensitivity of rainfall variations provides important insight regarding the responses and vulnerability of different areas to climate change. It will further strengthen the formulation of future strategy for management of water resources.
Źródło:
World Scientific News; 2015, 14; 1-55
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies