- Tytuł:
- A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm
- Autorzy:
-
Shial, Gyanaranjan
Saho, Sabita
Panigrahi, Sibarama - Powiązania:
- https://bibliotekanauki.pl/articles/27312857.pdf
- Data publikacji:
- 2023
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
grey wolf optimizer
JAYA algorithm
article swarm optimization
ine-cosinealgorithm
partitional clustering - Opis:
- This paper presents a hybrid meta-heuristic algorithm that uses the grey wolfoptimization (GWO) and the JAYA algorithm for data clustering. The ideais to use the explorative capability of the JAYA algorithm in the exploitativephase of GWO to form compact clusters. Here, instead of using only one bestand one worst solution for generating offspring, the three best wolves (alpha,beta and delta) and three worst wolves of the population are used. So, the bestand worst wolves assist in moving towards the most feasible solutions and simul-taneously it helps to avoid from worst solutions; this enhances the chances oftrapping at local optimal solutions. The superiority of the proposed algorithmis compared with five promising algorithms; namely, the sine-cosine (SCA),GWO, JAYA, particle swarm optimization (PSO), and k-means algorithms.The performance of the proposed algorithm is evaluated for 23 benchmarkmathematical problems using the Friedman and Nemenyi hypothesis tests. Ad-ditionally, the superiority and robustness of our proposed algorithm is testedfor 15 data clustering problems by using both Duncan's multiple range test andthe Nemenyi hypothesis test.
- Źródło:
-
Computer Science; 2023, 24 (3); 361--405
1508-2806
2300-7036 - Pojawia się w:
- Computer Science
- Dostawca treści:
- Biblioteka Nauki