Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Koliński, Andrzej" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling
Autorzy:
Trojanowski, Sebastian
Rutkowska, Aleksandra
Kolinski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1040439.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
protein comparative modeling
coarse grained protein models
protein threading
Monte Carlo simulations
replica exchange Monte Carlo
Opis:
A new approach to comparative modeling of proteins, TRACER, is described and benchmarked against classical modeling procedures. The new method unifies true three-dimensional threading with coarse-grained sampling of query protein conformational space. The initial sequence alignment of a query protein with a template is not required, although a template needs to be somehow identified. The template is used as a multi-featured fuzzy three-dimensional scaffold. The conformational search for the query protein is guided by intrinsic force field of the coarse-grained modeling engine CABS and by compatibility with the template scaffold. During Replica Exchange Monte Carlo simulations the model chain representing the query protein finds the best possible structural alignment with the template chain, that also optimizes the intra-protein interactions as approximated by the knowledge based force field of CABS. The benchmark done for a representative set of query/template pairs of various degrees of sequence similarity showed that the new method allows meaningful comparative modeling also for the region of marginal, or non-existing, sequence similarity. Thus, the new approach significantly extends the applicability of comparative modeling.
Źródło:
Acta Biochimica Polonica; 2010, 57, 1; 125-133
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Denatured proteins and early folding intermediates simulated in a reduced conformational space
Autorzy:
Kmiecik, Sebastian
Kurcinski, Mateusz
Rutkowska, Aleksandra
Gront, Dominik
Kolinski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1041278.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
sequence profiles
statistical potentials
protein folding intermediates
high resolution lattice protein models
Replica Exchange Monte Carlo
molten globule
protein folding
Opis:
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chains and the main-chain hydrogen bonds. Two types of approximations for the short-range interactions were compared: simple statistical potentials and knowledge-based protein-specific potentials derived from the sequence-structure compatibility of short fragments of protein chains. Model proteins in the denatured state are relatively compact, although the majority of the sampled conformations are globally different from the native fold. At the same time short protein fragments are mostly native-like. Thus, the denatured state of the model proteins has several features of the molten globule state observed experimentally. Statistical potentials induce native-like conformational propensities in the denatured state, especially for the fragments located in the core of folded proteins. Knowledge-based protein-specific potentials increase only slightly the level of similarity to the native conformations, in spite of their qualitatively higher specificity in the native structures. For a few cases, where fairly accurate experimental data exist, the simulation results are in semiquantitative agreement with the physical picture revealed by the experiments. This shows that the model studied in this work could be used efficiently in computational studies of protein dynamics in the denatured state, and consequently for studies of protein folding pathways, i.e. not only for the modeling of folded structures, as it was shown in previous studies. The results of the present studies also provide a new insight into the explanation of the Levinthal's paradox.
Źródło:
Acta Biochimica Polonica; 2006, 53, 1; 131-144
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies