Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "modeling environment" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The impact of the size of the training set on the predictive abilities of neural models on the example of the Day-Ahead Market System of TGE S.A.
Autorzy:
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/2175162.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Day Ahead Market
MATLAB environment
Simulink environment
neural modeling
prediction time
electricity prices
Opis:
The main object of the research was to examine the acceptable time horizon that could be predicted by previously learned models of the Day-Ahead Market (DAM) TGE S.A. system. The article contains the results of research on the predicting ability of different ANN models of the DAM TGE S.A. The research was conducted based on data covering the operation of the Polish stock exchange in the period from 2002 to 2019 (the first half of the year). The research was carried out based on the learned ANN models of the DAM system. Data were taken for examination covering the time from 2002 to 2019 (1st half of the year) and was divided into a different period, i.e., a month, a quarter, and a half-year., year, etc. The MSE, MAE, MAPE, and R2 were adopted as the criteria for assessing the ability of individual models to predict electricity prices. The research was carried out by successively expanding forecasting periods in a rolling manner. For example, for a half-year, prediction time intervals were increased from one week to month, two months, quarter, half-year, etc. results for a model representing a given period. A lot of interesting research results were obtained.
Źródło:
Studia Informatica : systems and information technology; 2022, 1(26); 5--22
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction capabilities of the LSTM and Perceptron models based on the Day-Ahead Market on the Polish Power Exchange S.A.
Autorzy:
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/27323577.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
shallow networks
deep networks
Day-Ahead Market
MATLAB
Simulink environment
neural modeling
prediction time
electricity prices
Opis:
The main purpose of the research was to examine the properties of models for two kinds of neural networks, a deep learning models in which the Long Short-Term Memory was chosen and shallow neural model in which the Perceptron Neural Network was chosen. The subject of the examination was the Day-Ahead Market system of PPE S.A. The article presents the learning results of both networks and the results of the predictive abilities of the models. The research was conducted based on data published on the Polish Stock Exchange for the 2018 year. The MATLAB environment was chosen as a tool for providing the examinations. The determination index (R2) and the mean square error (MSE) was adopted as the network evaluation criterion for the learning ability and for the prediction ability of both networks.
Źródło:
Studia Informatica : systems and information technology; 2023, 1(28); 69--82
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies