Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ji, Ming" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837849.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837792.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies