- Tytuł:
- Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien–Tanner) within carotid artery
- Autorzy:
-
Ramiar, A.
Larimi, M. M.
Ranjbar, A. A. - Powiązania:
- https://bibliotekanauki.pl/articles/307522.pdf
- Data publikacji:
- 2017
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
tętnica szyjna
model lepkoplastyczny
przepływ pulsujący
naprężenie ścinające
OpenFOAM
carotid artery
viscoelastic model
pulsatile flow
shear stress - Opis:
- Purpose: Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Methods: Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien–Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. Results: The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. Conclusions: The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1–4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2017, 19, 3; 27-41
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki