Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "douglas, I." wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
On Well-Covered Direct Products
Autorzy:
Kuenzel, Kirsti
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/32315158.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
well-covered graph
direct product of graphs
isolatable vertex
Opis:
A graph G is well-covered if all maximal independent sets of G have the same cardinality. In 1992 Topp and Volkmann investigated the structure of well-covered graphs that have nontrivial factorizations with respect to some of the standard graph products. In particular, they showed that both factors of a well-covered direct product are also well-covered and proved that the direct product of two complete graphs (respectively, two cycles) is well-covered precisely when they have the same order (respectively, both have order 3 or 4). Furthermore, they proved that the direct product of two well-covered graphs with independence number one-half their order is well-covered. We initiate a characterization of nontrivial connected well-covered graphs G and H, whose independence numbers are strictly less than one-half their orders, such that their direct product G × H is well-covered. In particular, we show that in this case both G and H have girth 3 and we present several infinite families of such well-covered direct products. Moreover, we show that if G is a factor of any well-covered direct product, then G is a complete graph unless it is possible to create an isolated vertex by removing the closed neighborhood of some independent set of vertices in G.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 627-640
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Graphs with Disjoint Dominating and 2-Dominating Sets
Autorzy:
Henning, Michael A.
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/30146715.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
2-domination
vertex partition
Opis:
A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 139-146
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Survey on Packing Colorings
Autorzy:
Brešar, Boštjan
Ferme, Jasmina
Klavžar, Sandi
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/31804166.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
packing coloring
packing chromatic number
subcubic graph
S -packing chromatic number
computational complexity
Opis:
If S = (a1, a2, . . .) is a non-decreasing sequence of positive integers, then an S-packing coloring of a graph G is a partition of V (G) into sets X1, X2, . . . such that for each pair of distinct vertices in the set Xi, the distance between them is larger than ai. If there exists an integer k such that V (G) = X1 ∪ ∪ Xk, then the partition is called an S-packing k-coloring. The S-packing chromatic number of G is the smallest k such that G admits an S-packing k-coloring. If ai = i for every i, then the terminology reduces to packing colorings and packing chromatic number. Since the introduction of these generalizations of the chromatic number in 2008 more than fifty papers followed. Here we survey the state of the art on the packing coloring, and its generalization, the S-packing coloring. We also list several conjectures and open problems.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 923-970
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A New Framework to Approach Vizing’s Conjecture
Autorzy:
Brešar, Boštjan
Hartnell, Bert L.
Henning, Michael A.
Kuenzel, Kirsti
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/32222699.pdf
Data publikacji:
2021-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Cartesian product
total domination
Vizing’s conjecture
Clark and Suen bound
Opis:
We introduce a new setting for dealing with the problem of the domination number of the Cartesian product of graphs related to Vizing’s conjecture. The new framework unifies two different approaches to the conjecture. The most common approach restricts one of the factors of the product to some class of graphs and proves the inequality of the conjecture then holds when the other factor is any graph. The other approach utilizes the so-called Clark-Suen partition for proving a weaker inequality that holds for all pairs of graphs. We demonstrate the strength of our framework by improving the bound of Clark and Suen as follows: $ \gamma (X \square Y) \ge \max \{\frac{1}{2} \gamma (X) \gamma_t (Y), \frac{1}{2} \gamma_t (X) \gamma (Y) \} $, where $ \gamma $ stands for the domination number, $ \gamma_t $ is the total domination number, and $ X \square Y $ is the Cartesian product of graphs $X$ and $Y$.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 3; 749-762
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies