Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "invariant subspaces" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On operator bands
Autorzy:
Drnovšek, Roman
Livshits, Leo
MacDonald, Gordon W.
Mathes, Ben
Radjavi, Heydar
Šemrl, Peter
Powiązania:
https://bibliotekanauki.pl/articles/1206129.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
invariant subspaces
idempotents
operator semigroups
Opis:
A multiplicative semigroup of idempotent operators is called an operator band. We prove that for each K>1 there exists an irreducible operator band on the Hilbert space $l^2$ which is norm-bounded by K. This implies that there exists an irreducible operator band on a Banach space such that each member has operator norm equal to 1. Given a positive integer r, we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space. We construct an operator band on $l^2$ that is weakly r-transitive and is not weakly (r+1)-transitive. We also study operator bands S satisfying a polynomial identity p(A, B) = 0 for all non-zero A,B ∈ S, where p is a given polynomial in two non-commuting variables. It turns out that the polynomial $p(A, B) = (A B - B A)^2$ has a special role in these considerations.
Źródło:
Studia Mathematica; 2000, 139, 1; 91-100
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies