Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "local error" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
A new nonlinear L-stable scheme with constant and adaptive step-size strategy
Autorzy:
Arain, Sadia
Qureshi, Sania
Shaikh, Asif Ali
Powiązania:
https://bibliotekanauki.pl/articles/2175496.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
stiff systems
singular systems
L-stability
local error
order stars
systemy sztywne
układ singularny
stabilność L
błąd lokalny
Opis:
The present study proposes a new explicit nonlinear scheme that solves stiff and nonlinear initial value problems in ordinary differential equations. One of the promising features of this scheme is its fourth-order convergence with strong stability having an unbounded region. A modern approach for relative stability growth analysis is also presented under order stars conditions. The scheme is also good in dealing with singular and stiff type of models. Comparing numerical experiments using various errors, including maximum absolute global error over the integration interval, absolute error at the endpoint, average error, norm of errors, and the CPU times (seconds), shows better performance. An adaptive step-size approach seems to increase the performance of the proposed scheme. The numerical simulations assure us of L -stability, consistency, order, and rapid convergence.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 4; 7--18
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of partial derivatives to derive a convergent numerical scheme with its error estimates
Autorzy:
Qureshi, Sania
Adeyeye, Oluwaseun
Shaikh, Asif Ali
Powiązania:
https://bibliotekanauki.pl/articles/122734.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
multi-derivative
local truncation error
stability
absolute relative errors
consistency
principal term
wielopochodna
pochodna cząstkowa
schemat numeryczny
błąd względny
błąd bezwzględny
Opis:
Using the idea of the partial derivative with respect to the ordinate of a given mathematical function, a new numerical scheme having third order convergence has been devised for solving initial value problems in ordinary differential equations. Such problems are deemed to be indispensable in diverse fields of science, medical and engineering and are most often required to be solved by the numerical schemes. In view of this, the proposed numerical scheme is found to be efficient in solving both autonomous and non-autonomous type of problems as supported by some numerical experiments in the present study. Using the Taylor expansion for the slopes involved in the scheme, the leading term of the local truncation error is shown to have contained Ϭ(h4) which proves third order accuracy of the scheme. In addition to this, consistency and linear stability analysis of the proposed scheme has extensively been discussed. Numerical experiments show better performance of the proposed numerical scheme when compared with existing numerical schemes of the same order as that of the scheme proposed. CPU time (seconds), maximum absolute relative error and the absolute relative error, computed at the last grid point of the integration interval for the associated initial value problem, are the parameters to test the performance of the proposed numerical scheme. MATLAB Version: 9.4.0.813654 (R2018a) in double-precision on a personal computer equipped with a Processor Intel (R) Core(TM) i3-4500U CPU@ 1.70 GHz running under the Windows 10 operating system has been employed in order to carry out all the required numerical computations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 4; 73-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies