Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "variables" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Macroeconomic factors in modelling the SMEs bankruptcy risk. The case of the Polish market
Autorzy:
Ptak-Chmielewska, Aneta
Matuszyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/425179.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bankruptcy risk model
logistic regression
macro variables
Opis:
The last financial crisis affected the SMEs sector in different countries at different levels and strength. SMEs represent the backbone of the economy of every country. Therefore, they need bankruptcy prediction models easily adaptable to their characteristics. In our analysis we verified hypothesis: including information about macroeconomic conditions significantly increases the effectiveness of the bankruptcy model. The data set used in our research contained information about 1,138 SMEs. All information was taken from the financial statements covering the period 2002-2010. The sample included enterprises from sectors: industry, trade and services. Selected financial ratios were used to build the model and the macroeconomic variables were added: GDP, inflation, and the unemployment rate. Logistic regression as the research method was applied. In our study we showed that the incorporation of the macro variables improved the prediction of the SMEs bankruptcy risk.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 3; 40-49
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DEFAULT PREDICTION FOR SME USING DISCRIMINANT AND SURVIVAL MODELS, EVIDENCE FROM POLISH MARKET
Autorzy:
Ptak-Chmielewska, Aneta
Matuszyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/453421.pdf
Data publikacji:
2014
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
survival analysis
discriminant analysis
macro variables
rating model
Opis:
The aim of this paper was to compare the new technique (survival analysis) used in the credit risk models with the traditional one (discriminant analysis), analyse the strengths and weaknesses of both methods and their usage in practice. This study attempts to use macroeconomic data to build models and examine its impact to the prediction. For this purpose, a number of models was built on the basis of the sample of 1547 enterprises including 494 defaults. The time range covered by sample was 2002-2012.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2014, 15, 2; 369-381
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Banks Distress – Regional Differences and Macroeconomic Conditions
Predykcja bankructwa banków – różnice regionalne i uwarunkowania makroekonomiczne
Autorzy:
Iwanicz-Drozdowska, Małgorzata
Ptak-Chmielewska, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/655439.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
bankructwo
CAMEL
predykcja logistyczna
zmienne makroekonomiczne
banks distress
logistic prediction
macroeconomic variables
Opis:
Artykuł poświęcony został bankructwom banków europejskich z lat 1990–2015. Wykorzystane zostały w nim niezbilansowane dane panelowe dla 3691 banków. Zidentyfikowano 132 bankructwa – zarówno faktyczne, jak i wynikające z konieczności subwencji. Wykorzystano zmienne na poziomie banków typu CAMEL i kontrolne zmienne makroekonomiczne (PKB, inflacja, stopa bezrobocia). Analiza oparta została na tradycyjnym modelu regresji logistycznej do predykcji bankructwa i metodzie k‑średnich do grupowania. Otrzymane wyniki wskazują, że prawdopodobieństwo bankructwa jest zależne od warunków makroekonomicznych poprzez wyniki klasteryzacji. Zmienne na poziomie banków, które są stabilnym predyktorem bankructwa od roku do czterech lat przed zdarzeniem, to: kapitał do aktywów ogółem (dźwignia) oraz kredyty do funduszy (płynność). Z czynników makroekonomicznych istotne znaczenie ma PKB, ale ze zróżnicowanym wpływem: dla roku przed bankructwem wysokie prawdopodobieństwo bankructwa jest związane z niską dynamika PKB, ale dla 2, 3 i 4 lat przed bankructwem wysokie ryzyko bankructwa jest związane z wysoką dynamika PKB, czyli jest to zależność odwrotna. Pokazuje to zmienną rolę otoczenia makroekonomicznego i wskazuje na potencjalny wpływ sprzyjających warunków makroekonomicznych na powstawanie problemu systemowego w sektorze bankowym.
In this study we focus on distress events of European banks over the period of 1990–2015, using unbalanced panel of 3,691 banks. We identify 132 distress events, which include actual bankruptcies as well as bailout cases. We apply CAMEL‑like bank‑level variables and control macroeconomic variables (GDP, inflation, unemployment rate). The analysis is based on traditional logistic regression and k‑means clustering. We find, that the probability of distress is connected with macroeconomic conditions via regional grouping (clustering). Bank‑level variables that were stable predictors of distress from 1 to 4 years prior to event are equity to total assets ratio (leverage) and loans to funding (liquidity). From macroeconomic factors, the GDP growth is a reasonable variable, however with differentiated impact: for 1 year distance high distress probability is connected with low GDP growth, but for 2, 3 and 4 year distance: high distress probability is conversely connected with high GDP growth. This shows the changing role of macroeconomic environment and indicates the potential impact of favorable macroeconomic conditions on building‑up systemic problems in the banking sector.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2019, 6, 345; 73-57
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Default Prediction Using the Cox Regression Model and Macroeconomic Conditions - A Lifetime Perspective
Predykcja niewykonania zobowiązań z wykorzystaniem modelu regresji Coksa i warunków makroekonomicznych – perspektywa czasu życia
Autorzy:
Ptak-Chmielewska, Aneta
Gonzalez, Juan Pablo Espinosa
Powiązania:
https://bibliotekanauki.pl/articles/38891274.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
survival analysis
Probability of Default (PD)
macro variables
Cox regression
analiza przeżycia
prawdopodobieństwo niewykonania zobowiązań
makrozmienne
regresja Coksa
Opis:
Aim: Since the implementation of International Financial Reporting Standards 9 (IFRS 9), several techniques on estimating the risk parameters for calculating the expected credit losses (ECL) have been implemented across financial institutions. The purpose of this study was to present the advantages of using survival analysis for the estimation of the probability of default (PD) given the particularity of the method, within the estimation of the time up to an event occurring. Methodology: The Cox Proportional Hazard Rate was selected as the model to predict the default incorporating the time to event and the macroeconomic conditions into the model. At the end of this research a validation was performed of the accuracy of the survival method through the time. Results: The ROC curve and concordance statistics were evaluated on different time points, the survival model shows a consistent high discriminatory power in terms of the AUC over each time horizon. The results revealed that time dependent ROC curves for the selected years from 1 to 4 and the first year have the largest area under the curve (AUC). The time dependent curve is evaluated at all event times under the 95% pointwise confidence limits of the fitted model, the AUC was on average around 0.8, with the highest values in the first years. Implications and recommendations: The results are promising for PD estimation in a lifetime perspective. This method is accurate for IFRS9 ECL purposes as time varying internal (portfolio characteristics) and external (macroeconomic) factors can be incorporated. The dynamic model incorporates the variability and changes of the variables from the past up to now. Originality/value: To date the survival analysis techniques were used mostly for PD estimations but not in a IFRS9 ECL perspective. Given the nature of this method of estimating the remaining lifetime perspective and the inclusion into the model of the macro variables, this model can be considered adequate according to IFRS9. The paper aimed to present their uses for lifetime prediction.
Cel: Od czasu wdrożenia Międzynarodowych Standardów Sprawozdawczości Finansowej 9 (MSSF 9), różne techniki estymacji parametrów ryzyka do wyliczenia oczekiwanych strat kredytowych zostały wdrożone w instytucjach finansowych. Celem tego badania jest prezentacja zalet stosowania analizy przeżycia do estymacji prawdopodobieństwa niewykonania zobowiązań (PD) z wykorzystaniem specyfiki metod estymacji czasu do wystąpienia zdarzenia. Metodyka: Wykorzystano model proporcjonalnych hazardów Coksa jako model do predykcji niewykonania zobowiązań włączający czas do wystąpienia zdarzenia i warunki makroekonomiczne do modelu. W badaniu przeprowadzono walidację metod przeżycia w czasie. Wyniki: Krzywa ROC i statystyki zgodności zostały ocenione dla różnych punktów w czasie. Model przeżycia wykazuje wysoką moc dyskryminacyjną w odniesieniu do AUC dla każdego horyzontu czasowego. Wyniki pokazują, że zależne od czasu krzywe ROC dla wybranych lat 1-4 i dla pierwszego roku mają najwyższą wartość pola pod krzywą (AUC). Krzywa zależna od czasu jest oceniana dla każdego czasu zdarzenia z 95-procentowym przedziałem ufności estymowanego modelu. Stwierdzono ponadto, że wartość AUC jest średnio na poziomie około 0,8, z najwyższą wartością w pierwszym roku. Implikacje i rekomendacje: Wyniki są obiecujące do estymacji prawdopodobieństwa niewykonania zobowiązań (PD) w perspektywie czasu życia kredytu. Stąd ta metoda jest odpowiednia do szacowania oczekiwanych strat kredytowych w ujęciu MSSF 9, ponieważ zależne od czasu wewnętrzne (charakterystyki portfelowe) i zewnętrzne (makroekonomiczne) czynniki mogą być uwzględnione w modelu. Model dynamiczny uwzględnia zmienność i zmiany charakterystyk historycznie w czasie aż do momentu bieżącego. Oryginalność/wartość: Dotychczas techniki analizy przeżycia były wykorzystywane głównie do estymacji prawdopodobieństwa niewykonania zobowiązań (PD), ale nie w perspektywie oczekiwanych strat kredytowych w ujęciu MSSF 9. ze względu na specyfikę metod do estymacji pozostałego czasu w perspektywie czasu życia. Dodatkowo włączenie do modelu zmiennych makroekonomicznych jest odpowiednim podejściem w MSSF 9. Artykuł ma na celu prezentację wykorzystania tych metod w predykcji czasu życia kredytu.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 2; 50-61
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies