Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Logistic Regression" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Statistical models in enterprises default risk assessment – an example of application
Modele statystyczne w ocenie ryzyka niewypłacalności przedsiębiorstw – przykład zastosowań
Autorzy:
Ptak-Chmielewska, Aneta
Kuleta, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/425008.pdf
Data publikacji:
2018
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
default risk
logistic regression
Cox model
Opis:
Default risk assessment is crucial in the banking activity. Different models were developed in the literature using the discriminant analysis, logistic regression and data mining techniques. In this paper the logistic regression was applied to verify models proposed by R. Jagiełło for different sectors. As an alternative, the logistic regression model with the nominal variable SECTOR was applied on the pooled sample of enterprises. The dynamic approach using the Cox regression survival model was estimated. Including the nominal variable SECTOR only slightly increases the predictive power of the model (in the case of “defaults”). The predictive power of the Cox regression model is lower, the only advantage is the higher accuracy classification in the case of “defaulted” enterprises.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2018, 22, 1; 94-106
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Macroeconomic factors in modelling the SMEs bankruptcy risk. The case of the Polish market
Autorzy:
Ptak-Chmielewska, Aneta
Matuszyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/425179.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bankruptcy risk model
logistic regression
macro variables
Opis:
The last financial crisis affected the SMEs sector in different countries at different levels and strength. SMEs represent the backbone of the economy of every country. Therefore, they need bankruptcy prediction models easily adaptable to their characteristics. In our analysis we verified hypothesis: including information about macroeconomic conditions significantly increases the effectiveness of the bankruptcy model. The data set used in our research contained information about 1,138 SMEs. All information was taken from the financial statements covering the period 2002-2010. The sample included enterprises from sectors: industry, trade and services. Selected financial ratios were used to build the model and the macroeconomic variables were added: GDP, inflation, and the unemployment rate. Logistic regression as the research method was applied. In our study we showed that the incorporation of the macro variables improved the prediction of the SMEs bankruptcy risk.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 3; 40-49
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bankruptcy Risk Models for Polish SMEs – Regional Approach
Modele ryzyka upadłości polskich MŚP – ujęcie regionalne
Autorzy:
Ptak-Chmielewska, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/655563.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
ryzyko kredytowe
modele upadłości
regresja logistyczna
credit risk
bankruptcy models
logistic regression
Opis:
Zarządzanie ryzykiem kredytowym stanowi kluczowy element w zarządzaniu bankiem. Do zarządzania ryzykiem kredytowym wykorzystywane są modele statystyczne tzw. Modele scoringowe i ratingowe. Do oceny ryzyka kredytowego przedsiębiorstw wykorzystuje się modele ratingowe. Składową modeli ratingowych są modele ilościowe (oparte na wskaźnikach finansowych) oraz modele jakościowe (oparte na ankiecie jakościowej). Do budowy modeli ilościowych wykorzystuje się modele statystyczne i ekonometryczne, głównie modele regresji logistycznej. W artykule omówione zostały modele statystyczne do oceny ilościowej wraz z przykładem empirycznym opartym na danych dla próby MŚP udostępnionej przez jeden z polskich banków. Wykorzystano model regresji logistycznej ze zmienną nominalną – region działalności, uwzględniający zróżnicowanie terytorialne. Pokazana została konstrukcja modelu uwzględniającego zarówno branże działalności, jak i region działalności.
Credit risk management is a key element in bank management. For credit risk management, statistical models are used, the so‑called scoring and rating models. For enterprise risk assessment, rating models are used. Rating models consist of quantitative models (based on financial ratios) and qualitative models (based on a questionnaire). For estimation of quantitative models, econometric and statistical models are used, mainly logistic regression models. In this paper, statistical models for quantitative assessment are presented, including an empirical example based on the sample of data for SMEs made available by one of Polish banks. A logistic regression model with a nominal variable – the region of activity, including territorial differences, was used. The construction of rating model was presented, including the sector and region of activity.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 1, 333
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies