Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "solar drying" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Numerical simulation and experimental validation of solar greenhouse dryer using finite element analysis for different roof shapes
Autorzy:
Yadav, Aditya Arvind
Prabhu, Pravin A.
Bagi, Jaydeep S.
Powiązania:
https://bibliotekanauki.pl/articles/1819128.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
solar greenhouse dryer
drying
moisture removal
solar thermal energy
finite element analysis
szklarnia
suszarnia słoneczna
suszenie
usuwanie wilgoci
energia słoneczna
analiza elementów skończonych
Opis:
The present study focuses on the numerical simulation and experimental validation of a Solar Greenhouse Dryer (SGHD). The Solar Dryers are the devices which uses solar energy to dry substances, especially crops with high moisture content, and the word Greenhouse means protection of crops from excess hot or cold climatic conditions and unwanted pests. Thus, Solar Greenhouse Dryer is a device which utilizes solar energy for drying of crops with high moisture content and prevents it from excess climatic conditions and provides optimum range of temperature and prevents the dried product from pests and dust while drying. The numerical simulation of SGHD was performed using Finite Element Analysis software ANSYS 2020 R2. Initially three different roof shapes were modelled using software CATIA V5 R3 namely triangular, trapezoidal and dome shape. The modelled SGHDs was then introduced to ANSYS domain for numerical analysis. The models were initially meshed in ANSYS workbench with unstructured tetrahedral structure of mesh over all the domains. The Solar Ray tracing content was used for numerical simulation of dryers, the solar ray tracing is used to predict direct illumination energy source produced by sun at experimental site. The experiment for no-load test was conducted at Bahe Borgaon, Dist- Sangli, Maharashtra, India at 17.115°N and 74.33°E.
Źródło:
Journal of Mechanical and Energy Engineering; 2021, 5, 1; 69--80
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Drying kinetics of a solar dryer for drying of potato chips in Western Maharashtra, India
Autorzy:
Yadav, Aditya Arvind
Bagi, Jaydeep S.
Prabhu, Pravin A.
Powiązania:
https://bibliotekanauki.pl/articles/2106434.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
solar greenhouse dryer
drying
potato chips
solar thermal energy
response surface methodology
design of experiments
szklarnia
suszarnia słoneczna
suszenie
chipsy ziemniaczane
energia słoneczna
metodologia powierzchni odpowiedzi
projektowanie eksperymentów
Opis:
The current study focuses on the performance of a solar greenhouse dryer for drying of potato chips in Solar Dryer and Open sun conditions in Western Maharashtra. Potato chips is a value added product that can be effectively used during throughout the year as snacks, a side dish or an appetizer. It can be either deep dried or backed for consumption. The dried potato contains a high fiber content and it helps to lower the cholesterol level in blood reducing the risk of blood pressure if consumed backed. Potato chips can effectively be stored for one year to six months and consumed as snacks. The experiment was conducted for drying of potato chips in Solar Greenhouse Dryer and open sun conditions on 1st of April 2021 for 6 hours. The initial weight of the potato chips to be dried was 500 grams both for the solar greenhouse dryer and open sun drying conditions. The experiment was conducted at Bahe, Borgaon, Tal-Walwa, Dist-Sangli, Maharashtra, India located at 17.115°N and 74.33°E. The experimental observations collected during the tests were set as input data for the Design of the Experiments (DoE) i.e., for Response Surface Modelling (RSM). The main aim of using DoE i.e., Response Surface Modelling, is to obtain an optimum region for drying of potato chips in the Solar Greenhouse Dryer, from the surface plot; the region of maxima and minima was obtained. The contour plot obtained during modeling resembles the optimum region of drying; the optimum region for drying of potato chips is 47 to 50°C respectively. The Moisture Removal Rate (MRR) for drying of potato chips in the Solar Greenhouse Dryer and Open sun drying is 83% and 78% respectively. The drying rate observed during the experiment has a better resemblance with simulated Response Surface Modelling.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 1; 91--98
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Response surface modelling and performance evaluation of solar dryer for drying of grapes
Autorzy:
Yadav, Aditya Arvind
Prabhu, Pravin A.
Bagi, Jaydeep S.
Powiązania:
https://bibliotekanauki.pl/articles/2052236.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
solar greenhouse dryer
drying
moisture removal
solar thermal energy
response surface methodology
design of experiments
szklarnia
suszarnia słoneczna
suszenie
usuwanie wilgoci
energia słoneczna
metodologia powierzchni odpowiedzi
projektowanie eksperymentów
Opis:
The current study focuses on the performance of Solar Greenhouse Dryer for drying of grapes for raisin making in Solar Dryer and Open sun condition in Western Maharashtra. The Maharashtra state ranks first in the production of grapes, probably Western Maharashtra produces nearly 800 thousand tons of grapes every year. The major wastage of grapes is due to low sugar content, glossy appearance, shrinkage, excess water in berry, scorching and size variation. Therefore, there is a need to preserve the grapes by drying and making raisins for a non-seasonal requirement. The experiment was conducted for drying of grapes in Solar Greenhouse Dryer and Open Sun condition from 1st of April to 4th of April for 48 hours. The initial weight of the grapes to be dried was 500 grams for both Solar Greenhouse Dryer and open sun drying conditions. The experiment was conducted at Bahe, Borgaon, Tal-Walwa, Dist- Sangli, Maharashtra, India located at 17.115o N and 74.33o E. The main aim of using DOE i.e., Response Surface Modelling is to get an optimum region for drying of grapes in Solar Greenhouse Dryer, from the Surface plot; the region of maxima and minima was obtained.
Źródło:
Journal of Mechanical and Energy Engineering; 2021, 5, 2; 157-168
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Life cycle assessment and economic valuation of a natural convection solar greenhouse dryer in Western Maharashtra, India
Autorzy:
Yadav, Aditya Arvind
Prabhu, Pravin A.
Bagi, Jaydeep S.
Powiązania:
https://bibliotekanauki.pl/articles/2106433.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
solar greenhouse dryer
drying
moisture removal
life cycle assessment
economic valuation
szklarnia
suszarnia słoneczna
suszenie
usuwanie wilgoci
ocena cyklu życia
wycena ekonomiczna
Opis:
The current study focuses on the life cycle assessment and an economic valuation of a natural convection solar greenhouse dryer in Western Maharashtra, India. The Solar Greenhouse Dryer is an active device that gains solar radiation incident on to the surface of the dryer and along with wind energy, it removes moisture from agricultural yield. The combination of solar Energy and wind energy removes moisture from agricultural yield. The Solar Greenhouse Dryer is primarily used in rural settings; hence, it is very important to analyse the environmental and economic aspects associated with the dryer to obtain the maximum benefit from the dryer with less investment possible. The experiment involving a natural convection solar dryer was conducted at Bahe, Borgaon, Tal-Walwa, Dist- Sangli, Maharashtra, India located at 17.115° N and 74.33° E. The environmental parameters taken into considerations during the analysis covered energy, Energy payback time and CO2 emissions, mitigation and carbon credits earned by the dryer. The economic analysis of the solar dryer consists of the annual cost of the dryer, the salvage value, the annual saving obtained and the payback period respectively. The embodied energy of the solar greenhouse dryer considering all the components of the dryer is 238.317 kWh, the energy payback time is 0.588 years and CO2 emissions are 24.327 kg per year, the carbon dioxide mitigation is 2.042 kg per kWh and the carbon credits earned by the dryer are nearly 28, 600. The annual cost of the dryer is Rs. 21, 600, the salvage value of the dryer is Rs. 7, 160, the annual savings obtained from the dryer are Rs. 1,62, 574 and the payback period is around 2 years respectively. The Solar Greenhouse Dryer is a cost-effective and environmentally friendly solution that can effectively be used in rural settings by farmers to prevent various post-harvest losses associated with the agricultural yield and to gain extra additional income from the dried products.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 1; 99--106
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies