- Tytuł:
- Different kinds of boundary conditions for time-fractional heat conduction equation
- Autorzy:
- Povstenko, Y.
- Powiązania:
- https://bibliotekanauki.pl/articles/121936.pdf
- Data publikacji:
- 2011
- Wydawca:
- Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
- Tematy:
-
boundary conditions
heat conduction
time-fractional equation
Caputo derivative
przewodzenie ciepła
warunki brzegowe
pochodna Caputo - Opis:
- The time-fractional heat conduction equation with the Caputo derivative of the order 0 ˂ α ˂ 2 is considered in a bounded domain. For this equation different types of boundary conditions can be given. The Dirichlet boundary condition prescribes the temperature over the surface of the body. In the case of mathematical Neumann boundary condition the boundary values of the normal derivative are set, the physical Neumann boundary condition specifies the boundary values of the heat flux. In the case of the classical heat conduction equation (α = 1), these two types of boundary conditions are identical, but for fractional heat conduction they are essentially different. The mathematical Robin boundary condition is a specification of a linear combination of the values of temperature and the values of its normal derivative at the boundary of the domain, while the physical Robin boundary condition prescribes a linear combination of the values of temperature and the values of the heat flux at the surface of a body.
- Źródło:
-
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2011, 16; 61-66
2450-9302 - Pojawia się w:
- Scientific Issues of Jan Długosz University in Częstochowa. Mathematics
- Dostawca treści:
- Biblioteka Nauki