Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cainozoic" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Analiza tempa depozycji materiału detrytycznego w basenach sedymentacyjnych zachodnich Karpat zewnętrznych jako wskaźnik aktywności tektonicznej ich obszarów źródłowych
Tectonic activity of sediment source areas for theWestern Outer Carpathian basins—constraints from analysis of sediment deposition rate
Autorzy:
Poprawa, P.
Malata, T.
Oszczypko, N.
Słomka, T.
Golonka, J.
Krobicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074424.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
basen sedymentacyjny
depozycja
aktywność tektoniczna
Karpaty Zachodnie
Western Outer Carpathians
Mesozoic
Cainozoic
sediment source area
deposition rate
Opis:
Analysis of deposition rate were performed for synthetic sections, representing the upper Jurassic to lower Miocene sedimentary fill of the Western Outer Carpathian (WOC) basins. Calculated deposition rates differs in a range of a few orders of magnitude. During Tithonian to Berriasian-early Valanginian tectonic activity of the source areas supplying the Silesian Basin was related to the mechanism of syn-rift extensional elevation and erosion of horsts. General decay of source area activity in Valanginian to Cenomanian time was caused by regional post-rift thermal sag of the WOC. The Barremian to Albian phase of compressional uplift of the source area located north of the WOC lead to increase of deposition rate in some zones of the WOC basin. In Turonian to Paleocene time thick-skinned collision and thrusting took place south and south-west (in the recent coordinates) of the Silesian Basin causing very rapid, diachronous uplift of this zone, referred to as Silesian Ridge, resulting with high deposition rate in the Silesian Basin. At that time supply of sediments to the Magura Basin from south was relatively low, and the Pieniny Klipen Belt was presumably zone of transfer of these sediments. In Eocene the zone of collisional shortening in the WOC system was relocated to the south, causing rapid uplift of the Southern Magura Ridge and intense supply of detritus to the Magura Basin. Thrusting in the Southern Magura Ridge and collisional compression resulted with flexural bending of its broad foreland, being the reason for decrease of activity of both the Silesian Ridge and the source area at the northern rim of the WOC. The Eocene evolution of the Silesian Ridge is interpreted as controlled by both episodic tectonic activity and eustatic sea level changes. Contrasting development of the Southern Magura Ridge and the northern rim of Central Carpathians during Eocene stands for a palaeographic distance between the two domains at that time. During Oligocene and early Miocene a significant increase of deposition rates is observed for the basin in which sediments of the Krosno beds were deposited. This was caused by tectonic uplift of the source at the northern rim of the WOC, as well as the Silesian Ridge and the partly formed Magura nappe. The Miocene molasse of the WOC foredeep basin is characterised by notably higher maximum deposition rates than ones calculated for the flysch deposits of the WOC.
Źródło:
Przegląd Geologiczny; 2006, 54, 10; 878-887
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model późnojurajsko-wczesnomioceńskiej ewolucji tektonicznej zachodnich Karpat zewnętrznych
Model of late Jurassic to early Miocene tectonic evolution of the Western Outer Carpathians
Autorzy:
Poprawa, P.
Malata, T.
Powiązania:
https://bibliotekanauki.pl/articles/2074481.pdf
Data publikacji:
2006
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
basen sedymentacyjny
obszar źródłowy
tektonika
Karpaty zewnętrzne
miocen
jura
Outer Carpathians
Mesozoic
Cainozoic
sedimentary basin
source area
tectonics
Opis:
At the end of the Jurassic and beginning of the Cretaceous in the Western Outer Carpathians (WOC) rift-related extension led to development of: the deep marine grabens with flysch and pelagic sedimentation, the zones of shallow marine carbonate sedimentation, and the elevated horsts, supplying the basins with sediments. Transition to the Early Cretaceous and Cenomanian post-rift thermal sag stage was responsible for a general ceasing of tectonic activity in the source areas and unification of the previous sub-basins. In Barremian–Albian time, the northern, external sources for sediments were uplifted due to compression, presumably caused by the orogenic collision in the Middle and Outer Dacides and/or collision related to subduction of the Penninic Ocean. The Silesian Ridge, rapidly elevated and eroded during Late Cretaceous and Paleocene, is interpreted here as an active thick-skinned thrust belt. Nappe stacking in that area and stress transmission towards foreland caused flexural subsidence of the proximal zone (the inner Silesian Basin) and uplift in the distal zone (including: the outer Silesian Basin, the Subsilesian facies zone, the Skole Basin and the northern sediment source areas). The Eocene alternating shallow marine deposition in the Silesian Ridge and its exposition for erosion is interpreted as controlled by both eustatic sea level changes and episodic tectonic activity. At this time new thick-skinned thrust belt developed south of the Magura Basin, which supplied vast amount of detritus for the Magura Beds. The Eocene tectonic shortening and deformations in the Southern Magura Ridge and development of the accretionary prism caused flexural bending of its broad foreland, subsidence and relative facies unification of the basins and decrease of activity of the source areas located north of the Magura Basin. The Oligocene progress of plates/microplates convergence and relocation of the zone of tectonic shortening towards the north led to compressional uplift of the source areas located both to the north of the WOC basins and to the south of the Silesian facies zone, the later composed of crystalline basement, as well as sediments of the Magura Unit. That sources supplied with detritus the Upper Oligocene–Llower Miocene Krosno Beds, being a diachronic continuation of synorogenic deposition of the Magura Beds. During the Late Cretaceous–Paleogene–Early Miocene, an important tectonic shortening across the WOC took place, accommodated mainly in the source areas. This indicates that the palaeogeographic relationships between the Silesian Basin, the Magura Basin and the Central Carpathian Paleogene Basin were changing during the Cretaceous and Cainozoic. In the time span of Albian to Oligocene in the zone palaeogeographically located between the Magura Basin and the Central Carpathians three separate source areas were active, each characterized by a different geological setting. These sources were replacing each other in time, suggesting significant collisional and/or strike slip reorganisation of the zone during that period. The collision of the WOC evolved in time from thick-skinned mode during the Late Cretaceous–Paleogene to thin-skinned one during the Middle Miocene.
Źródło:
Przegląd Geologiczny; 2006, 54, 12; 1066-1080
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies