Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "digital object" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wzmocnienie procesu klasyfikacji obiektowej wielospektralnych ortofotomap lotniczych danymi z lotniczego skanowania laserowego
Enhancing the obia classification of multispectral aerial orthoimages using airborne laser scanning data
Autorzy:
Wężyk, P.
Mlost, J.
Pierzchalski, M.
Wójtowicz-Nowakowska, A.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/129858.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
ortofotomapa cyfrowa
lotniczy skaning laserowy
projekt ISOK
object-based image analysis
digital aerial orthophoto
Airborne Laser Scanning
ISOK
Opis:
Klasyfikacja obiektowa (OBIA, ang. Object Based Image Analysis) jest nowatorską metodą analizy zobrazowań teledetekcyjnych, w której homogeniczne obiekty (segmenty), na które podzielony został obraz (za pomocą specyficznych algorytmów) poddawane są klasyfikacji. Dotychczasowe projekty wykazały, iż OBIA przeprowadzana na wysokorozdzielczych i wielospektralnych lotniczych ortofotomapach cyfrowych, wspierana modelami wysokościowymi, prowadzi do uzyskania bardzo dokładnych wyników. Stosunkowo niewiele prac koncentruje się na określeniu wpływu produktów pochodnych chmury punktów lotniczego skanowania laserowego (ang. Airborne Laser Scanning), takich jak wartość: odchylenia standardowego wysokości, gęstości punktów czy intensywności odbicia, na poprawę wyników klasyfikacji OBIA. W prezentowanej pracy poddano ocenie wzmocnienie procesu klasyfikacji OBIA danymi ALS na podstawie dwóch transektów badawczych („A” oraz „B”) o powierzchni 3 km2, położonych w okolicach Włocławka. Celem końcowym procesu analizy OBIA było uzyskanie aktualnej mapy klas pokrycia terenu. W opracowaniu wykorzystano lotnicze ortofotomapy cyfrowe oraz dane z lotniczego skaningu laserowego, pozyskane na przełomie sierpnia I września 2010 roku. Na podstawie punktów danych ALS wygenerowano warstwy pochodne takie jak: liczba odbić, intensywność, odchylenie standardowe, jak również wygenerowano znormalizowany Numeryczny Modelu Powierzchni Terenu (zNMPT). W wariancie pierwszym „I” wykorzystano dane uzyskane wyłącznie w nalocie fotogrametrycznym, tj. wielospektralne ortofotomapy lotnicze (kamera Vexcel) oraz indeksy roślinności (w tym NDVI i in.). Wariant drugi prac ”II” zakładał wykorzystanie dodatkowo danych z lotniczego skaningu laserowego. Określona dokładność klasyfikacji OBIA wykonanej w oparciu o cyfrową ortofotomapę lotniczą wyniosła 91.6% dla transektu badawczego „A” oraz 93.1% dla transektu „B”. Użycie danych ALS spowodowało podniesienie dokładności ogólnej do poziomu 95.0% („A”) oraz 96.9% („B”). Praca wykazała, iż zastosowanie danych ALS podnosi dokładność klasyfikacji segmentów o bardzo zbliżonych właściwościach spektralnych (np. rozróżnienie powierzchni dużych, płaskich dachów budynków od parkingów czy klas roślinności niskiej od średniej i wysokiej. Wprowadzenie warstw pochodnych ALS do procesu segmentacji poprawia także kształt powstających obiektów a tym samym klas końcowych. Analiza „surowych” danych ALS w postaci plików w formacie LAS otwiera dodatkowe możliwości, których nie daje wykorzystywanie rastrowych warstw takich jak zNMPT. Pojawiająca się w nowej wersji oprogramowania eCognition (TRIMBLE) możliwość operowania segmentami przestrzennymi jeszcze te możliwości klasyfikacji podnosi. Niewątpliwie sporym problemem w integracji informacji spektralnej (ortoobraz) oraz geometrycznej (ALS) jest efekt rzutu środkowego skutkujący przesunięciami radialnymi dla wysokich obiektów leżących w znacznej odległości od punktu głównego zdjęcia.
Object Based Image Analysis (OBIA) is an innovative method of analyzing remote sensing data based not on the pixels, but on homogenous features (segments) generated by specific algorithms. OBIA based on high-resolution aerial orthophotography and powered by digital terrain models (nDSM) brings high accuracy analysis. Not many scientific papers brings implementation of ALS point cloud directly into OBIA image processing. Paper present study done on two test areas of approx. 3 km2, situated close to Wloclawek, representing different land use classes (transect “A” – urban area; transect “B” – rural and forest landscape). Geodata (digital aerial orthophotographs and Airborne Laser Scanning data) were captured almost at the same time (September 2010). Different raster layers were created from *. LAS file, like: intensity, number of returns, normalized elevation (nDSM). Two version (I and II) of OBIA classification were performed. First version (I) based only on aerial orthophotographs and different coefficients (like NDVI). Second variant of OBIA (wariant II) based additionally on ALS data. Total accuracy of variant I was 94.1% (transect “A”) and 92.6% (transect “B”). OBIA classification powered by ALS data provide to increase of the results up to 96.9% (transect “A”) and 95.0% (transect “B”) as well. Classification of objects with similar type of surface properties (like buildings and bare soil) was much better using ALS information. The ALS data improve also the shape of objects, that there are more realistic. Data fusion in OBIA processing brings new capabilities,. These capabilities are bigger thanks to processing based on 3-dimensional segments. The results of analysis would be more accurate, when orthoimages (“true ortho”) would be used, instead of standard orthophotographs. The running ISOK project in Poland will bring soon a huge data set (approx. 150 TB) of ALS and photogrammetry connected products. This situation requires suitable software to analyze it fast and accurate on the full automatic way. The OBIA classification seems to be a solution for such challenge.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 467-476
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa zagrożenia erozyjnego gruntów rolnych w Małopolsce na podstawie klasyfikacji OBIA obrazów teledetekcyjnych oraz analiz przestrzennych GIS
The map of agricultural land erosion risk assesment of Malopolska voivodeship (Poland) based on OBIA of remotely sensed data and GIS spatial analyses
Autorzy:
Wężyk, P.
Drzewiecki, W.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szafrańska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130620.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
erozja wodna gleb
mapa glebowo-rolnicza
analiza obiektowa obrazu
RapidEye
model USLE
analiza przestrzenna GIS
water soil erosion
digital soil map
object oriented image analysis
USLE model
GIS spatial analysis
Opis:
Zjawisko erozji wodnej należy do głównych przyczyn degradacji gleb w Europie. Stanowi ono również główny czynnik degradujący gleby na obszarze Małopolski - regionu o najwyższym stopniu zagrożenia erozyjnego w skali Polski. Występując lokalnie, w zależności od warunków fizjograficznych, może stanowić poważny problem gospodarczy i środowiskowy. Silne zróżnicowanie fizjograficzne oraz różne formy pokrycia i użytkowania terenu województwa małopolskiego, stanowiły główną potrzebę przeprowadzenia oceny zagrożenia erozyjnego i nasilenia stopnia degradacji gleb. Projekt realizowany dla Urzędu Marszałkowskiego Województwa Małopolskiego miał na celu identyfikację obszarów, które w największym stopniu narażone są na degradację(erozję potencjalną, czyli taką, jaka miałaby miejsce na polu użytkowanym jako czarny ugór bez stosowania zabiegów przeciwerozyjnych oraz erozję aktualną, czyli z uwzględnieniem aktualnej struktury użytkowania i stosowanych zabiegów przeciwerozyjnych) przez co w pierwszej kolejności wymagają wdrożenia skutecznych metod ochrony gleb użytkowanych rolniczo. W projekcie wykorzystano wysokorozdzielcze zobrazowania satelitarne systemu RapidEye z lat 2010-2011 oraz cyfrowe ortofotomapy lotnicze (RGB). Dane teledetekcyjne poddano zaawansowanej technologicznie klasyfikacji obiektowej (ang. OBIA - Object Based Image Analysis) w oprogramowaniu eCognition (Trimble Geospatial) wspartej analizami przestrzennymi GIS. Ocenę nasilenia erozyjnej degradacji gleb województwa małopolskiego przeprowadzono w oparciu o modelowanie z wykorzystaniem algorytmu USLE (ang. Universal Soil Loss Equation). Jest to najszerzej rozpowszechniony na świecie model erozyjny. W latach 90-tych XX wieku powstała nowa (zmodyfikowana) wersja modelu do określania erozji gleb, tj. (R)USLE. Ocena zagrożenia gleb województwa małopolskiego w aspekcie erozji potencjalnej wykazała, iż jedynie 15% powierzchni terenów użytkowanych rolniczo w województwie nie jest w zasadzie zagrożone erozją wodną. Na obszarze 28.6% terenów rolnych występuje natomiast potencjalnie średnie lub większe zagrożenie erozyjne - mogące skutkować trwałą degradacją profilu glebowego. Tereny zagrożone występują w największym nasileniu w południowej - górzystej części województwa. Ocena przeprowadzona w aspekcie erozji aktualnej pokazuje jednocześnie, iż rzeczywisty aktualny poziom zagrożenia erozyjnego jest znacznie niższy od potencjalnego. Ponad 40% terenów rolniczych nie jest obecnie narażonych na występowanie zjawisk erozji wodnej gleb, a erozja na poziomie średnim lub wyższym stwierdzana jest dla 10% powierzchni tych obszarów. Oznacza to, iż sposób prowadzenia gospodarki rolnej w znacznym stopniu ogranicza występowanie zjawisk erozyjnych. Podsumowując w przypadku województwa małopolskiego zagrożenie erozyjne użytków rolnych należy ocenić jako średnio-wysokie i dość mocno zróżnicowane terytorialnie. Zastosowana metodyka prac poza dużą oszczędnością czasu jaką przyniosła klasyfikacja obiektowa (OBIA) wykazała także możliwość wykorzystania modelu erozji (R)USLE dla jednostek administracyjnych o znacznej powierzchni, takich jak: powiat czy województwo.
In 2011 the Marshal Office of Malopolska Voivodeship decide to evaluate the vulnerability of soils to water erosion for the entire region. The special work-flow of geoinformation technologies was used to fulfil this goal. First of all, the soil map had to be updated to include changes in land use and land cover which took place since 1960s, when most of them were made. The process of soil map updating had to be realised with very high degree of automation, because of the large area to be mapped (ca. 15 000 km sq.) and limited time period (ca. 3 months for complete erosion risk assessment). The approach used was based on the Object Based Image Analysis (OBIA) of orthophotomaps from both high resolution satellite images (RapidEye) and digital aerial photographs and applied GIS spatial analyses. Soil map with up-to-date land use and land cover information, together with rainfall data, detailed Digital Elevation Model and statistical information about areas sown with particular crops created the input information for erosion modelling in GIS environment. Soil erosion risk assessment was based on (R)USLE approach. Both, the potential and the actual soil erosion risk were assessed quantificatively and qualitatively. The soil erosion risk assessment for Malopolska Voivodeship showed that only 15% of the agricultural land in the region is generally free of the risk of water erosion. For the 28.6% of agricultural land the potential medium or higher risk of erosion exist - which can result in permanent degradation of the soil profile. The study was presented in forms of digital thematic maps and reports prepared for the entire area of Malopolska Voivodeship and each administrative district as well.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 24; 403-420
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies