Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "water losses" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The Application of Artificial Neural Networks in the Assessment of Pressure Losses in Water Pipes in the Design of Water Distribution Systems
Zastosowanie sztucznych sieci neuronowych do oceny strat ciśnienia w przewodach wodociągowych
Autorzy:
Dawidowicz, J.
Czapczuk, A.
Piekarski, J.
Powiązania:
https://bibliotekanauki.pl/articles/1813711.pdf
Data publikacji:
2018
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution system
hydraulic calculations
pressure losses
artificial neural networks
system dystrybucji wody
obliczenia hydrauliczne
liniowe straty ciśnienia
sztuczne sieci neuronowe
Opis:
The water distribution system is one of the most important elements of the water supply system, the construction of which accounts for the largest part of the costs involved, while at the same time, being the determining factor in the supply of water. Pipelines should be equipped to continue fulfilling their role for many years. In connection with the above, a very important task is the correct design and execution of hydraulic calculations. During the implementation of calculations, it is often necessary to correct data frequently, in order to obtain the correct solution. Numerous parameters are evaluated in the calculation process, including flow velocity through water supply pipelines, flow rate, pressure loss and pressure in individual, network nodes. An important parameter, often underestimated, is the level of pressure loss in the calculation sections of water pipes. This paper proposes a method for the assessment of pressure loss and for the use of artificial neural networks. For this purpose, one DH1 class, describing the correct conditions and four DH2-DH5 classes, characterising problems related to the amount of pressure losses in the water pipes, have been determined. Based on the parameters characterising the operation of the water pipe, the artificial neural network, selects one of the classes and thus indicates the occurrence of a specific problem, or gives the ‘all clear’.
System dystrybucji wody stanowi jeden z najważniejszych elementów wodociągu, którego budowa pochłania największą część kosztów, a jednocześnie w głównej mierze decyduje o możliwościach dostawy wody. Rurociągi wodociągowe powinny spełniać swoją rolę przez wiele lat. W związku z powyższym bardzo ważnym zadaniem jest poprawne zaprojektowanie i wykonanie obliczeń hydraulicznych. Podczas realizacji obliczeń najczęściej konieczne jest wielokrotne korygowanie danych w celu uzyskania poprawnego rozwiązania. W procesie obliczeń ocenie podlega wiele parametrów, w tym prędkość przepływu przez rurociągi wodociągowe, natężenie przepływu, wysokość strat ciśnienia oraz ciśnienie w poszczególnych węzłach sieci. Istotnym parametrem, często niedocenianym, jest wysokość strat ciśnienia na odcinkach obliczeniowych przewodów wodociągowych. W niniejszej pracy zaproponowano metodę oceny strat ciśnienia a pomocą sztucznych sieci neuronowych. W tym celu zdefiniowano jedną klasę DH1 opisującą poprawne warunki oraz cztery DH2-DH5, charakteryzujące problemy związane z wysokością strat ciśnienia w przewodach wodociągowych. Sztuczna sieć neuronowa na podstawie parametrów charakteryzujących pracę przewodu wodociągowego dokonuje wyboru jednej z klas, wskazując w ten sposób na występowanie określonego problemu lub jego brak.
Źródło:
Rocznik Ochrona Środowiska; 2018, Tom 20, cz. 1; 292-308
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Multilayer Perceptron for the Calculation of Pressure Losses in Water Supply Lines
Zastosowanie perceptronu wielowarstwowego do obliczeń strat ciśnienia w przewodach wodociągowych
Autorzy:
Czapczuk, A.
Dawidowicz, J.
Piekarski, J.
Powiązania:
https://bibliotekanauki.pl/articles/1813822.pdf
Data publikacji:
2017
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution systems
artificial intelligence
expert systems
artificial neuronal networks
heuristic methods
calculation of pressure losses
systemy dystrybucji wody
sztuczna inteligencja
systemy ekspertowe
sztuczne sieci neuronowe
metody heurystyczne
obliczenia strat ciśnienia
Opis:
Numerical methods have been widely used for many years in the design and operation of water supply systems. Specialised computer programmes offer more and more facilities, especially for data entry and viewing, but they still function on the basis of predetermined algorithms. At present, however, we strive to create computational programmes with a certain degree of creativity, which should make it easier for users to make decisions at various stages of the task and improve the quality of their solutions. The increasing power of computers will not solve complex problems alone. Only by introducing appropriate calculation methods can we obtain the right results. It seems that classical algorithms with a formalised course can be supplemented, nowadays, with far more advanced computational techniques. This paper presents an literature review on the use of artificial neural networks in the design and operation of water distribution systems. Presented in the second part of the paper, is an overview of the artificial neural network, developed for the calculation of pressure losses in water supply lines. The calculation of hydraulic piping with the EPANET programme for various input parameters resulted in a collection of 16,260 training examples. Input parameters of the neural network include pipe length, measurable flow, absolute roughness coefficient and the nominal diameter. Very high compatibility was obtained between the calculation results for those pressure losses obtained from the EPANET programme and those obtained from the multi-layered perceptron with one hidden layer.
Metody numeryczne stosuje się powszechnie od wielu lat w projektowaniu i eksploatacji systemów zaopatrzenia w wodę. Specjalistyczne programy komputerowe oferują coraz więcej udogodnień, szczególnie w zakresie wprowadzania danych oraz przeglądania wyników, lecz nadal funkcjonują na podstawie z góry określonych algorytmów. Obecnie dąży się jednak do stworzenia programów obliczeniowych, które będzie charakteryzować pewien stopień kreatywności, co powinno ułatwić użytkownikom podejmowanie decyzji na różnych etapach realizacji zadania i poprawić jakość rozwiązań. Zwiększająca się moc obliczeniowa komputerów samoistnie nie rozwiąże złożonych problemów. Dopiero wprowadzanie odpowiednich metod obliczeniowych, pozwala uzyskać właściwe efekty. Wydaje się, że klasyczne algorytmy o sformalizowanym przebiegu, można obecnie uzupełnić znacznie bardziej zaawansowanymi technikami obliczeniowymi. W niniejszej pracy dokonano przeglądu literatury w zakresie zastosowania sztucznych sieci neuronowych w projektowaniu systemów dystrybucji wody. W drugiej części artykułu zamieszczono omówienie sztucznej sieci neuronowej do obliczeń strat ciśnienia w przewodach wodociągowych. W wyniku obliczeń hydraulicznych przewodów wodociągowych za pomocą programu EPANET dla różnych wartości parametrów wejściowych uzyskano zbiór 16260 przykładów uczących. Parametry wejściowe sieci neuronowej to długość przewodu, przepływ miarodajny, współczynnik chropowatości bezwzględnej oraz średnica nominalna. Uzyskano bardzo wysoką zgodność pomiędzy wynikami obliczeń strat ciśnienia z programu EPANET i perceptronu wielowarstwowego z jedną warstwą ukrytą.
Źródło:
Rocznik Ochrona Środowiska; 2017, Tom 19; 200-210
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies