Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zarządzanie jakością," wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Diagnosis of Missed Ductile Iron Melts with Process Modelling
Autorzy:
Perzyk, M.
Werlaty, M.
Powiązania:
https://bibliotekanauki.pl/articles/382916.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
quality management
information technology
foundry industry
process fault diagnosis
ductile iron melting
data driven model
zarządzanie jakością
technologia informacyjna
przemysł odlewniczy
diagnostyka uszkodzeń
topienie żeliwa
Opis:
The paper presents an application of advanced data-driven (soft) models in finding the most probable particular causes of missed ductile iron melts. The proposed methodology was tested using real foundry data set containing 1020 records with contents of 9 chemical elements in the iron as the process input variables and the ductile iron grade as the output. This dependent variable was of discrete (nominal) type with four possible values: ‘400/18’, ‘500/07’, ‘500/07 special’ and ‘non-classified’, i.e. the missed melt. Several types of classification models were built and tested: MLP-type Artificial Neural Network, Support Vector Machine and two versions of Classification Trees. The best accuracy of predictions was achieved by one of the Classification Tree model, which was then used in the simulations leading to conversion of the missed melts to the expected grades. Two strategies of changing the input values (chemical composition) were tried: content of a single element at a time and simultaneous changes of a selected pair of elements. It was found that in the vast majority of the missed melts the changes of single elements concentrations have led to the change from the non-classified iron to its expected grade. In the case of the three remaining melts the simultaneous changes of pairs of the elements’ concentrations appeared to be successful and that those cases were in agreement with foundry staff expertise. It is concluded that utilizing an advanced data-driven process model can significantly facilitate diagnosis of defective products and out-of-control foundry processes.
Źródło:
Archives of Foundry Engineering; 2017, 17, 4; 123-126
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methodology of Fault Diagnosis in Ductile Iron Melting Process
Autorzy:
Perzyk, M.
Kozlowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/382169.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
quality management
information technology
foundry industry
process fault diagnosis
ductile iron
data driven model
zarządzanie jakością
technologia informatyczna
przemysł odlewniczy
diagnostyka uszkodzeń
żeliwo ADI
model danych
Opis:
Statistical Process Control (SPC) based on the Shewhart’s type control charts, is widely used in contemporary manufacturing industry, including many foundries. The main steps include process monitoring, detection the out-of-control signals, identification and removal of their causes. Finding the root causes of the process faults is often a difficult task and can be supported by various tools, including data-driven mathematical models. In the present paper a novel approach to statistical control of ductile iron melting process is proposed. It is aimed at development of methodologies suitable for effective finding the causes of the out-of-control signals in the process outputs, defined as ultimate tensile strength (Rm) and elongation (A5), based mainly on chemical composition of the alloy. The methodologies are tested and presented using several real foundry data sets. First, correlations between standard abnormal output patterns (i.e. out-of-control signals) and corresponding inputs patterns are found, basing on the detection of similar patterns and similar shapes of the run charts of the chemical elements contents. It was found that in a significant number of cases there was no clear indication of the correlation, which can be attributed either to the complex, simultaneous action of several chemical elements or to the causes related to other process variables, including melting, inoculation, spheroidization and pouring parameters as well as the human errors. A conception of the methodology based on simulation of the process using advanced input - output regression modelling is presented. The preliminary tests have showed that it can be a useful tool in the process control and is worth further development. The results obtained in the present study may not only be applied to the ductile iron process but they can be also utilized in statistical quality control of a wide range of different discrete processes.
Źródło:
Archives of Foundry Engineering; 2016, 16, 4; 101-108
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of time-series analysis in control of chemical composition of grey cast iron
Autorzy:
Perzyk, M.
Rodziewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/380404.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
technologia informatyczna
przemysł odlewniczy
zarządzanie jakością
analiza szeregów czasowych
proces topienia
żeliwo szare
information technology
foundry industry
quality management
time series analysis
melting process
grey cast iron
Opis:
The aim of the paper was an attempt at applying the time-series analysis to the control of the melting process of grey cast iron in production conditions. The production data were collected in one of Polish foundries in the form of spectrometer printouts. The quality of the alloy was controlled by its chemical composition in about 0.5 hour time intervals. The procedure of preparation of the industrial data is presented, including OCR-based method of transformation to the electronic numerical format as well as generation of records related to particular weekdays. The computations for time-series analysis were made using the author's own software having a wide range of capabilities, including detection of important periodicity in data as well as regression modeling of the residual data, i.e. the values obtained after subtraction of general trend, trend of variability amplitude and the periodical component. The most interesting results of the analysis include: significant 2-measurements periodicity of percentages of all components, significance 7-day periodicity of silicon content measured at the end of a day and the relatively good prediction accuracy obtained without modeling of residual data for various types of expected values. Some practical conclusions have been formulated, related to possible improvements in the melting process control procedures as well as more general tips concerning applications of time-series analysis in foundry production.
Źródło:
Archives of Foundry Engineering; 2012, 12, 4; 171-175
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Special Cause Control Charts to Green Sand Process
Autorzy:
Perzyk, M.
Rodziewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/381885.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
quality management
information technology
foundry industry
statistical process control
time series analysis
control charts
zarządzanie jakością
technologia informatyczna
przemysł odlewniczy
statystyczne sterowanie procesem
analiza szeregów czasowych
karta kontrolna
Opis:
Statistical Process Control (SPC) based on the well known Shewhart control charts, is widely used in contemporary manufacturing industry, including many foundries. However, the classic SPC methods require that the measured quantities, e.g. process or product parameters, are not auto-correlated, i.e. their current values do not depend on the preceding ones. For the processes which do not obey this assumption the Special Cause Control (SCC) charts were proposed, utilizing the residual data obtained from the time-series analysis. In the present paper the results of application of SCC charts to a green sand processing system are presented. The tests, made on real industrial data collected in a big iron foundry, were aimed at the comparison of occurrences of out-of-control signals detected in the original data with those appeared in the residual data. It was found that application of the SCC charts reduces numbers of the signals in almost all cases It is concluded that it can be helpful in avoiding false signals, i.e. resulting from predictable factors.
Źródło:
Archives of Foundry Engineering; 2015, 15, 4; 55-60
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Time-Series Analysis for Predicting Defects in Continuous Steel Casting Process
Autorzy:
Rodziewicz, A.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380643.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
quality management
continuous steel casting
time series analysis
naïve Bayesian classifier
technologia informatyczna
przemysł odlewniczy
zarządzanie jakością
ciągłe odlewanie stali
analiza szeregów czasowych
naiwny klasyfikator Bayesa
Opis:
The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Źródło:
Archives of Foundry Engineering; 2016, 16, 4; 125-130
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies