- Tytuł:
- Corrosion Resistance of Cast Duplex Steels
- Autorzy:
-
Müller, Peter
Pernica, V.
Kaňa, V. - Powiązania:
- https://bibliotekanauki.pl/articles/2174617.pdf
- Data publikacji:
- 2022
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
cast duplex steel
pitting
critical pitting temperature
ferric chloride
mechanical properties
corrosion
staliwo duplex
korozja
odporność na wżery
temperatura krytyczna
chlorek żelazowy
właściwości mechaniczne - Opis:
- The aim of this work is to investigate the resistance of cast duplex (austenitic-ferritic) steels to pitting corrosion with respect to the value of PREN (Pitting Resistance Equivalent Number). Pitting corrosion is one of the most common types of corrosion of stainless steels. In most cases, it is caused by the penetration of aggressive anions through the protective passive layer of the steel, and after its disruption, it leads to subsurface propagation of corrosion. The motivation for the research was a severe pitting corrosion attack on the blades of the gypsum-calcium water mixer in a thermal power plant operation. In order to examine the corrosion resistance, 4 samples of 1.4517 steel with different concentrations of alloying elements (within the interval indicated by the steel grade) and thus with a different PREN value were cast. The corrosion resistance of the samples was evaluated by the ASTM G48 – 11 corrosion test in a 6% aqueous FeCl3 solution at room and elevated solution temperatures. To verify the possible effect of different alloying element concentrations on the mechanical properties, the research was supplemented by tensile and Charpy impact tests. Based on the results, it was found that a significant factor in the resistance of duplex steels to pitting corrosion is the temperature of the solution. For the components in operation, it is therefore necessary to take this effect into account and thoroughly control and manage the temperature of the environment in which the components operate.
- Źródło:
-
Archives of Foundry Engineering; 2022, 22, 3; 5--10
1897-3310
2299-2944 - Pojawia się w:
- Archives of Foundry Engineering
- Dostawca treści:
- Biblioteka Nauki