Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Schaefer, R." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
HP-HGS strategy for inverse AC/DC resistivity logging measurement simulations
Autorzy:
Gajda-Zagórska, E.
Paszyński, M
Schaefer, R.
Pardo, D.
Powiązania:
https://bibliotekanauki.pl/articles/305666.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
resistivity logging simulations
adaptive finite element method
hierarchical genetic search
inverse problems
Opis:
In this paper, we present resistivity-logging-measurement simulation with the use of two types of borehole logging devices: those which operate with zero frequency (direct current, DC) and those with higher frequencies (alternate current, AC). We perform simulations of 3D resistivity measurements in deviated wells, with a sharp angle between the borehole and formation layers. We introduce a hierarchical adaptive genetic strategy hp−HGS interfaced with an adaptive finite element method. We apply a strategy for the solution of the inverse problem, where we identify the resistivities of the formation layers based on a given measurement. We test the strategy on both direct and alternate current cases.
Źródło:
Computer Science; 2013, 14 (4); 629-644
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An agent-oriented hierarchic strategy for solving inverse problems
Autorzy:
Smołka, M.
Schaefer, R.
Paszyński, M.
Pardo, D.
Álvarez-Aramberri, J.
Powiązania:
https://bibliotekanauki.pl/articles/329764.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
inverse problem
hybrid optimization method
memetic algorithm
multi-agent system
magnetotelluric data inversion
zadanie odwrotne
optymalizacja hybrydowa
algorytm memetyczny
system wieloagentowy
Opis:
The paper discusses the complex, agent-oriented hierarchic memetic strategy (HMS) dedicated to solving inverse parametric problems. The strategy goes beyond the idea of two-phase global optimization algorithms. The global search performed by a tree of dependent demes is dynamically alternated with local, steepest descent searches. The strategy offers exceptionally low computational costs, mainly because the direct solver accuracy (performed by the hp-adaptive finite element method) is dynamically adjusted for each inverse search step. The computational cost is further decreased by the strategy employed for solution inter-processing and fitness deterioration. The HMS efficiency is compared with the results of a standard evolutionary technique, as well as with the multi-start strategy on benchmarks that exhibit typical inverse problems’ difficulties. Finally, an HMS application to a real-life engineering problem leading to the identification of oil deposits by inverting magnetotelluric measurements is presented. The HMS applicability to the inversion of magnetotelluric data is also mathematically verified.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 483-498
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies