Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "L1/L2" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Solutions of Some L(2, 1)-Coloring Related Open Problems
Autorzy:
Mandal, Nibedita
Panigrahi, Pratima
Powiązania:
https://bibliotekanauki.pl/articles/31341092.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
span of a graph
no-hole coloring
irreducible coloring
unicyclic graph
L(2 1)-coloring
Opis:
An L(2, 1)-coloring (or labeling) of a graph G is a vertex coloring f : V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and |f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices u and v in G. The span of an L(2, 1)-coloring is the maximum color (or label) assigned by it. The span of a graph G is the smallest integer λ such that there exists an L(2, 1)-coloring of G with span λ. An L(2, 1)-coloring of a graph with span equal to the span of the graph is called a span coloring. For an L(2, 1)-coloring f of a graph G with span k, an integer h is a hole in f if h ∈ (0, k) and there is no vertex v in G such that f(v) = h. A no-hole coloring is an L(2, 1)-coloring with no hole in it. An L(2, 1)-coloring is irreducible if color of none of the vertices in the graph can be decreased to yield another L(2, 1)-coloring of the same graph. A graph G is inh-colorable if there exists an irreducible no-hole coloring of G. Most of the results obtained in this paper are answers to some problems asked by Laskar et al. [5]. These problems are mainly about relationship between the span and maximum no-hole span of a graph, lower inh-span and upper inh-span of a graph, and the maximum number of holes and minimum number of holes in a span coloring of a graph. We also give some sufficient conditions for a tree and an unicyclic graph to have inh-span Δ + 1.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 279-297
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Irreducible No-Hole L(2, 1)-Coloring of Edge-Multiplicity-Paths-Replacement Graph
Autorzy:
Mandal, Nibedita
Panigrahi, Pratima
Powiązania:
https://bibliotekanauki.pl/articles/31342318.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
L (2,1)-coloring
no-hole coloring
irreducible coloring
subdivision graph
edge-multiplicity-paths-replacement graph
Opis:
An L(2, 1)-coloring (or labeling) of a simple connected graph G is a mapping f : V (G) → Z+ ∪ {0} such that |f(u)−f(v)| ≥ 2 for all edges uv of G, and |f(u) − f(v)| ≥ 1 if u and v are at distance two in G. The span of an L(2, 1)-coloring f, denoted by span(f), of G is max{f(v) : v ∈ V (G)}. The span of G, denoted by λ(G), is the minimum span of all possible L(2, 1)-colorings of G. For an L(2, 1)-coloring f of a graph G with span k, an integer l is a hole in f if l ∈ (0, k) and there is no vertex v in G such that f(v) = l. An L(2, 1)-coloring is a no-hole coloring if there is no hole in it, and is an irreducible coloring if color of none of the vertices in the graph can be decreased and yield another L(2, 1)-coloring of the same graph. An irreducible no-hole coloring, in short inh-coloring, of G is an L(2, 1)-coloring of G which is both irreducible and no-hole. For an inh-colorable graph G, the inh-span of G, denoted by λinh(G), is defined as λinh(G) = min{span(f) : f is an inh-coloring of G. Given a function h : E(G) → ℕ − {1}, and a positive integer r ≥ 2, the edge-multiplicity-paths-replacement graph G(rPh) of G is the graph obtained by replacing every edge uv of G with r paths of length h(uv) each. In this paper we show that G(rPh) is inh-colorable except possibly the cases h(e) ≥ 2 with equality for at least one but not for all edges e and (i) Δ(G) = 2, r = 2 or (ii) Δ (G) ≥ 3, 2 ≤ r ≤ 4. We find the exact value of λinh(G(rPh)) in several cases and give upper bounds of the same in the remaining. Moreover, we find the value of λ(G(rPh)) in most of the cases which were left by Lü and Sun in [L(2, 1)-labelings of the edge-multiplicity-paths-replacement of a graph, J. Comb. Optim. 31 (2016) 396–404].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 525-552
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies