Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Osowski, K." wg kryterium: Autor


Wyświetlanie 1-8 z 8
Tytuł:
Data mining methods for prediction of air pollution
Autorzy:
Siwek, K.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/330775.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
computational intelligence
feature selection
neural network
random forest
air pollution forecasting
inteligencja obliczeniowa
selekcja cech
sieć neuronowa
lasy losowe
zanieczyszczenie powietrza
Opis:
The paper discusses methods of data mining for prediction of air pollution. Two tasks in such a problem are important: generation and selection of the prognostic features, and the final prognostic system of the pollution for the next day. An advanced set of features, created on the basis of the atmospheric parameters, is proposed. This set is subject to analysis and selection of the most important features from the prediction point of view. Two methods of feature selection are compared. One applies a genetic algorithm (a global approach), and the other—a linear method of stepwise fit (a locally optimized approach). On the basis of such analysis, two sets of the most predictive features are selected. These sets take part in prediction of the atmospheric pollutants PM10, SO2, NO2 and O3. Two approaches to prediction are compared. In the first one, the features selected are directly applied to the random forest (RF), which forms an ensemble of decision trees. In the second case, intermediate predictors built on the basis of neural networks (the multilayer perceptron, the radial basis function and the support vector machine) are used. They create an ensemble integrated into the final prognosis. The paper shows that preselection of the most important features, cooperating with an ensemble of predictors, allows increasing the forecasting accuracy of atmospheric pollution in a significant way.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 467-478
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mining Data of Noisy Signal Patterns in Recognition of Gasoline Bio-Based Additives using Electronic Nose
Autorzy:
Osowski, S.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/220792.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
data mining
electronic nose
gasoline blends
random forest
support vector machine
wavelet denoising
Opis:
The paper analyses the distorted data of an electronic nose in recognizing the gasoline bio-based additives. Different tools of data mining, such as the methods of data clustering, principal component analysis, wavelet transformation, support vector machine and random forest of decision trees are applied. A special stress is put on the robustness of signal processing systems to the noise distorting the registered sensor signals. A special denoising procedure based on application of discrete wavelet transformation has been proposed. This procedure enables to reduce the error rate of recognition in a significant way. The numerical results of experiments devoted to the recognition of different blends of gasoline have shown the superiority of support vector machine in a noisy environment of measurement.
Źródło:
Metrology and Measurement Systems; 2017, 24, 1; 27-44
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local dynamic integration of ensemble in prediction of time series
Autorzy:
Osowski, S.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/201557.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
ensemble of predictors
dynamic integration
time series prediction
sieci neuronowe
zespół predyktorów
dynamiczna integracja
Opis:
The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 3; 517-525
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computerised system for fault diagnosis of the rotor bars of squirrel-cage induction motor
Komputerowy system diagnostyczny uszkodzeń prętów klatki maszyny indukcyjnej
Autorzy:
Osowski, S.
Kurek, J.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/257946.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
klatkowa maszyna indukcyjna
wykrywanie uszkodzeń
pręt
maszyna wektorów nośnych
przetwarzanie sygnału
squirrel-cage induction motor
bar fault detection
support vector machine (SVM)
signal processing
Opis:
The paper presents the computerised system for the diagnosis of the rotor bars of an induction electrical motor. The solution relies on the processing of the measured stator current and application of the Support Vector Machine as the classifier. The important point is the generation of the diagnostic features on the basis of which the SVM classifier undertakes its decision whether or not the bars are faulty. The most important problem is concerned with the generation of the diagnostic features, on the basis of which the recognition of the state of the rotor bars is done. In our approach, we use the spectral information of the stator current, limited to a strictly specified region. The selected features form the input vector applied to the single class Support Vector Machine, responsible for recognition of the fault. The results of the numerical experiments are presented and discussed in the paper.
Praca przedstawia skomputeryzowany automatyczny system diagnostyczny do wykrywania uszkodzeń prętów maszyny indukcyjnej. Rozwiązanie jest typu bezinwazyjnego i może być zastosowane do maszyny w ruchu. Sygnały diagnostyczne generowane są na podstawie zarejestrowanych sygnałów prądu statora. W aplikacji wykorzystano jednoklasową sieć SVM (ang. Support Vector Machine) pracującą jako klasyfikator. Jednym z najistotniejszych problemów rozwiązanych w tym zadaniu jest generacja i selekcja odpowiednich cech diagnostycznych, na podstawie których klasyfikator dokonuje rozpoznania stanu prętów. Zaproponowano cechy bazujące na charakterystyce spektralnej prądu statora, ograniczonej do wybranego zakresu częstotliwości związanego z poślizgiem maszyny. System zbudowany w ramach projektu jest w pełni zautomatyzowany, poczynając od akwizycji sygnałów, poprzez ich przetwarzanie wstępne, aż po końcowy werdykt (pręty uszkodzone bądź nieuszkodzone).
Źródło:
Problemy Eksploatacji; 2010, 4; 135-151
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble neural network approach for accurate load forecasting in a power system
Autorzy:
Siwek, K.
Osowski, S.
Szupiluk, R.
Powiązania:
https://bibliotekanauki.pl/articles/907659.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
ślepa separacja sygnałów
prognozowanie obciążenia
neural network
blind source separation
ensemble of predictors
load forecasting
Opis:
The paper presents an improved method for 1-24 hours load forecasting in the power system, integrating and combining different neural forecasting results by an ensemble system. We will integrate the results of partial predictions made by three solutions, out of which one relies on a multilayer perceptron and two others on self-organizing networks of the competitive type. As the expert system we will apply different integration methods: simple averaging, SVD based weighted averaging, principal component analysis and blind source separation. The results of numerical experiments, concerning forecasting the hourly load for the next 24 hours of the Polish power system, will be presented and discussed. We will compare the performance of different ensemble methods on the basis of the mean absolute percentage error, mean squared error and maximum percentage error. They show a significant improvement of the proposed ensemble method in comparison to the individual results of prediction. The comparison of our work with the results of other papers for the same data proves the superiority of our approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 303-315
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential electronic nose in on-line dynamic measurements
Autorzy:
Osowski, S.
Siwek, K.
Grzywacz, T.
Brudzewski, K.
Powiązania:
https://bibliotekanauki.pl/articles/221848.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electronic nose
differential system
volatile recognition
Opis:
The paper presents application of differential electronic nose in the dynamic (on-line) volatile measurement. First we compare the classical nose employing only one sensor array and its extension in the differential form containing two sensor arrays working in differential mode. We show that differential nose performs better at changing environmental conditions, especially the temperature, and well performs in the dynamic mode of operation. We show its application in recognition of different brands of tobacco.
Źródło:
Metrology and Measurement Systems; 2014, 21, 4; 649-662
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified neuro-fuzzy TSK network and its application in electronic nose
Autorzy:
Osowski, S.
Brudzewski, K.
Tran-Hoai, L.
Powiązania:
https://bibliotekanauki.pl/articles/201226.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neuro-fuzzy TSK networks
fuzzy clusterization
regression
classification
Opis:
The paper develops the modified structure of the Takagi-Sugeno-Kang neuro-fuzzy network with a theoretical basis for its adaptation. The simplified structure follows from the basic theoretical considerations concerning the way of creating the inference rules. The important point of this solution is the application of the fuzzy clustering algorithm to the input data. The efficiency of the proposed solution has been checked on the examples of regression and classification problems concerning the electronic nose.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2013, 61, 3; 675-680
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing automatic recognition system of drill wear in standard laminated chipboard drilling process
Autorzy:
Kurek, J.
Kruk, M.
Osowski, S.
Hoser, P.
Wieczorek, G.
Jegorowa, A.
Górski, J.
Wilkowski, J.
Śmietańska, K.
Kossakowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/200766.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostic expert systems
neural networks
wavelet packets
wear monitoring
diagnostyczny system ekspercki
sieci neuronowe
pakiety falkowe
monitorowanie zużycia
Opis:
The paper presents an automatic approach to recognition of the drill condition in a standard laminated chipboard drilling process. The state of the drill is classified into two classes: “useful” (sharp enough) and “useless” (worn out). The case “useless” indicates symptoms of excessive drill wear, unsatisfactory from the point of view of furniture processing quality. On the other hand the “useful” state identifies tools which are still able to drill holes acceptable due to the required processing quality. The main problem in this task is to choose an appropriate set of diagnostic features (variables), based on which the recognition of drill state (“useful” versus “useless”) can be made. The features have been generated based on 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. Different statistical parameters describing these signals and also their Fourier and wavelet representations have been used for defining the features. Sequential feature selection is applied to detect the most class discriminative set of features. The final step of recognition is done by using three types of classifiers, including support vector machine, ensemble of decision trees and random forest. Six standard drills of 12 mm diameter with tungsten carbide tips were used in experiments. The results have confirmed good quality of the proposed diagnostic system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 3; 633-640
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies