Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sosnowski, T." wg kryterium: Autor


Wyświetlanie 1-9 z 9
Tytuł:
Implementacja algorytmów korekcji niejednorodności matryc detektorów mikrobolometrycznych w układzie FPGA
Implementation of nonuniformity correction algorithms of microbolometer focal plane arrays in FPGA device
Autorzy:
Orżanowski, T.
Sosnowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/155153.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
mikrobolometr
korekcja niejednorodności
FPGA
microbolometer
nonuniformity correction
Opis:
W artykule przedstawiono realizację sprzętową algorytmów korekcji niejednorodności odpowiedzi detektorów w matrycach mikrobolometrycznych. Opisano dwie podstawowe metody kalibracyjne: jednopunktową (OPC) i dwupunktową (TPC). Na podstawie danych pomiarowych matrycy mikrobolometrycznej firmy ULIS wyznaczono współczynniki korekcyjne oraz odpowiedź matrycy zawierającą stały wzorzec szumu (FPN). Do wykonania sprzętowej korekcji niejednorodności użyto zestawu uruchomieniowego DSP Development Kit Stratix II Edition (Altera). W wyniku implementacji algorytmu TPC uzyskano maksymalną wartość niejednorodności resztkowej (RNU) 0,15 % w zakresie temperatury od 273 K do 343 K. W przypadku korekcji jednopunktowej maksymalna wartość RNU była ponad 3 razy większa dla tego samego zakresu temperatury.
In this paper the hardware implementation of response nonuniformity correction (NUC) algorithms of microbolometer focal plane arrays (FPAs) is presented. Two basic calibration methods: one-point correction (OPC) and two-point correction (TPC) are described. The NUC coefficients and FPA response containing fixed pattern noise have been evaluated on the basis of measurement data of the ULIS microbolometer FPA. The DSP Development Kit Stratix II Edition (Altera) has been used to perform the hardware NUC. As a result of TPC algorithm implementation, we have obtained the residual nonuniformity (RNU) of 0.15 % (max.) in temperature range from 273 K to 343 K. In case of OPC implementation the RNU maximum value was over three times higher at the same temperature range.
Źródło:
Pomiary Automatyka Kontrola; 2006, R. 52, nr 11, 11; 8-11
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System cyfrowego sterowania i przetwarzania obrazu z mikrobolometrycznej matrycy detektorów podczerwieni
Digital control system and image processing for microbolometer infrared focal plane array
Autorzy:
Sosnowski, T.
Orżanowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/158850.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
termowizja
kamera termowizyjna
przetwarzanie obrazu
Opis:
W artykule przedstawiono system do cyfrowego sterowania i przetwarzania obrazu termowizyjnego cechujący się znaczną elastycznością stosowanych metod i algorytmów. Zaprojektowany system realizuje szereg czynność, do których należą: odczytanie i sterowanie modułem matrycy detektorów IR, wykonanie korekcji niejednorodności detektorów matrycy, wyznaczenie wartości pikseli dla uszkodzonych detektorów, sterowanie wyświetlaniem obrazu termowizyjnego w ustalonym formacie. Ponadto system może zostać uzupełniony o algorytmy przetwarzania danych zależne od jego konkretnego zastosowania. System został tak zaprojektowany, że algorytmy przetwarzania danych niezbędne do konkretnego zastosowania mogą zostać zaimplementowane w systemie bez ingerencji w elementy sprzętowe.
A digital system for control and thermal image processing which has high flexibility regarding implemented methods and algorithms is presented. The designed system performs many actions: control signal readout from infrared focal plane array, nonuniformity correction of detectors response in array, bad pixels replacement, and producing thermal image in required format for the display. Moreover, other digital signal processing algorithms can be implemented in this system depending on the application. The algorithm implementation is made without any change in hardware.
Źródło:
Prace Instytutu Elektrotechniki; 2008, 234; 119-134
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kompensacja rozrzutu czułości detektorów mikrobolometrycznych w obserwacyjnej kamerze termowizyjnej
Microbolometers responsivity spread compensation in observational infrared camera
Autorzy:
Orżanowski, T.
Sosnowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/159616.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
mikrobolometr
korekcja niejednorodności
microbolometer
non-uniformity correction
Opis:
W artykule jest przedstawiony algorytm kompensacji rozrzutu czułości detektorów mikrobolometrycznych oraz jego realizacja sprzętowa i zastosowanie. Algorytm zawiera właściwości korekcji jednopunktowej i korekcji dwupunktowej, które są stosowane do kompensacji niejednorodności odpowiedzi matryc detektorów podczerwieni. W zaproponowanym algorytmie liczba operacji matematycznych wykonywanych sprzętowo podczas korekcji odpowiedzi detektora w matrycy jest ograniczona do jednego mnożenia i dwóch operacji dodawania. Algorytm korekcji był testowany z matrycą mikrobolometryczną o rozdzielczości 384x288 pikseli i rozmiarze detektora 35 µm firmy ULIS (Francja). Źródłem jednorodnego promieniowania podczerwonego było specjalne ciało czarne o dużej powierzchni promieniującej. W wyniku badań uzyskano niejednorodność odpowiedzi matrycy po korekcji poniżej 0,16 % dla zakresu temperatury ciała czarnego od 20°C do 50°C i temperatury otoczenia 21°C ± 2,5°C. Niejednorodność odpowiedzi matrycy bez korekcji wynosiła 8,1 %.
A nonuniformity correction (NUC) algorithm for microbolometer infrared focal plane array (FPA) and its hardware implementation and application are presented. The NUC algorithm includes features of the one-point correction and the two-point correction which are used for compensation of FPA response nonuniformity. In proposed NUC algorithm the number of mathematical operations performed by hardware to compensate a response nonuniformity of particular detectors in array is reduced to one multiplication and two additions. As the uniform infrared source a special extended black body was applied. The NUC algorithm was tested with the 384x288 microbolometers FPA with 35µm pixel-pitch manufactured by ULIS (France). During tests the microbolometer FPA response nonuniformity (RNU) after correction was obtained under 0.16% (std dev/mean) at the blackbody temperature range from 20°C to 50°C and the ambient temperature of 21°C ± 2.5°C. The RNU value without any correction was equaled 8.1%.
Źródło:
Prace Instytutu Elektrotechniki; 2008, 237; 21-30
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda korekcji czułości matrycowych detektorów podczerwieni
Response nonuniformity correction method for infrared focal plane arrays
Autorzy:
Orżanowski, T.
Sosnowski, T.
Madura, H.
Powiązania:
https://bibliotekanauki.pl/articles/154581.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
korekcja niejednorodności
matryca detektorów podczerwieni
nonuniformity correction
infrared focal plane array
Opis:
W artykule przedstawiono metodę korekcji czułości matrycowych detektorów podczerwieni, która nie wymaga pamiętania pełnej tablicy współczynników korekcyjnych. Wartości współczynników korekcji czułości dla każdej kolumny detektorów IR w matrycy są aproksymowane wielomianem n-tego stopnia w funkcji numeru wiersza. Pozwala to na zmniejszenie wymagań dla systemu cyfrowego przetwarzania sygnału z matrycy, ponieważ w pamięci są przechowywane tylko współczynniki wielomianów dla poszczególnych kolumn matrycy zamiast współczynniki korekcyjne dla wszystkich detektorów. Opracowana metoda jest tylko nieznacznie gorsza od metody dwupunktowej używającej kompletnych tablic współczynników korekcyjnych.
In this paper a nonuniformity correction (NUC) method for infrared focal plane array (IRFPA) response that uses a reduced table of correction coefficients is presented. In this method the gain correction coefficients of infrared detectors in array are estimated by means of the approximation polynomials (Eq. 1) of the row number for the each detector column in the array. It allows reducing significantly hardware requirements for the IRFPA output readout system because the system has to store in a memory just the poly-nomial coefficients for particular columns instead of the correction coefficients for all detectors in the array. The polynomial coefficients are assigned by the least mean square method using the set of true gain coefficients which are obtained, as in the two-point correction procedure, by means of infrared blackbodies (Fig. 2). After that the gain coefficients estimated by these polynomials can be used in the standard NUC algorithm to compensate a detector response nonuniformity. The real-time processing of a detector response is possible especially when the field-programmable gate array devices are applied to the IRFPA readout system. The proposed NUC method is just a bit worse than the two-point correction with the full table of the gain correction coefficients (Fig. 4).
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 10, 10; 1108-1111
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przetwarzanie sygnału w kamerze termowizyjnej z zastosowaniem układu programowalnego
Signal processing in a thermal camera using programmable logic device
Autorzy:
Sosnowski, T.
Orżanowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/156234.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
termowizja
przetwarzanie sygnałów
termovision
signal processing
Opis:
W artykule przedstawiono system do cyfrowej analizy i przetwarzania obrazu zastosowany w kamerze termowizyjnej. Zaprojektowany system realizuje szereg czynność, do których należą: sterowanie układem matrycy mikrobolometrycznej, wykonanie korekcji niejednorodności detektorów matrycy, wyznaczenie wartości sygnału dla uszkodzonych detektorów, sterowanie wyświetlaniem obrazu termowizyjnego. System został tak zaprojektowany, że algorytmy przetwarzania danych niezbędne do konkretnego zastosowania mogą zostać zaimplementowane w systemie bez ingerencji w elementy sprzętowe. Zostało to uzyskane przez zastosowanie układu programowalnego FPGA oraz układu mikroprocesorowego, które mogą być programowane w systemie.
The paper presents a system for image digital analysis and processing used in a thermal camera. A programmable system ensures significant flexibility for registration of methods and algorithms. It means that it is possible to change or add the processing algorithms, of the data from detectors array, performed in the camera. The system designed for digital analysis and processing of a thermal image controls a system of a microbolometrer focal plane array in order to read a value of the signal from all detector arrays, corrects non-uniformities of detectors array, determines a signal value for bad pixels, and controls displaying a thermal image of a specific format. Moreover, data processing algorithms can be added to the system in dependence on its predicted application. Thus, camera service can be simplified by automatic selection of parameters of thermal camera operation. By applying the methods of signal analysis, a thermal camera can be used not only for observation but also for detection and recognition of appearing objects and phenomena. Data processing methods, employed in a given device, depend on a definite application and on a kind of the analysed data. Thus, they cannot be universal ones and not chosen once and for all. The system has been designed in such a way that data processing algorithms, indispensable for the defined application, can be implemented in the system with no interference in hardware elements. It has been obtained using FPGA programmable device and microprocessor system that are in-system programmable.
Źródło:
Pomiary Automatyka Kontrola; 2008, R. 54, nr 8, 8; 543-545
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementacja algorytmu korekcji niejednorodności odpowiedzi matrycy mikrobolometrycznej w układzie programowalnym
Implementation of response nonuniformity correction algorithm of microbolometer focal plane array in programmable logic device
Autorzy:
Orżanowski, T.
Sosnowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/156248.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
mikrobolometr
korekcja niejednorodności
układ FPGA
micobolometer
nonuniformity correction
FPGA device
Opis:
W artykule jest przedstawiony algorytm korekcji niejednorodności odpowiedzi matrycy mikrobolometrycznej oraz jego implementacja w układzie programowalnym FPGA. Algorytm NUC (nonuniformity correction) łączy właściwości korekcji jednopunktowej i korekcji dwupunktowej, które są stosowane do kompensacji niejednorodności odpowiedzi matrycy detektorów podczerwieni. Podstawowa różnica między zaproponowanym algorytmem NUC a standardowym algorytmem korekcji dwupunktowej jest w sposobie wyznaczania współczynników korekcji przesunięć charakterystyk poszczególnych mikrobolometrów w matrycy. Pozwala to zredukować liczbę operacji matematycznych wykonywanych sprzętowo podczas korekcji do jednego mnożenia i dwóch operacji dodawania. Wszystkie moduły cyfrowe użyte do przetwarzania sygnału wyjściowego z matrycy, zbierania danych i wyświetlania obrazu zostały zaprojektowane za pomocą zestawu laboratoryjego Altera DSP Development Kit Stratix II Edition. Zaproponowany algorytm NUC był testowany z matrycą mikrobolometryczną 384´288 pikseli o rozmiarze detektora 35 žm firmy ULIS (Francja). Podczas badań uzyskano niejednorodność odpowiedzi matrycy mikrobolometrycznej po korekcji NUC poniżej 0,16 % (std dev/mean) dla zakresu temperatury ciała czarnego od 20 °C do 50 °C i zmiany temperatury otoczenia š2.5 °C. Niejednorodność odpowiedzi matrycy bez korekcji wynosiła 8,1 %.
A nonuniformity correction (NUC) algorithm for microbolometer infrared focal plane array (FPA) and its implementation on a field programmable gate array (FPGA) device are presented. The NUC algorithm integrates features of the one-point correction and the two-point correction (TPC) to compensate FPA response nonuniformity. The main difference between the proposed NUC algorithm and the standard TPC is in the way of offset coefficients evaluation for individual microbolometers in FPA. It allows reducing the number of mathematical operations performed by hardware to one multiplication and two additions. All digital modules for processing of FPA output, data collection, and image displaying have been designed by the use of the Altera DSP Development Kit Stratix II Edition. The proposed NUC algorithm was tested with the ULIS 384´288 microbolometer FPA with 35žm pixel-pitch. During tests the microbolometer FPA response nonuniformity (RNU) after correction was obtained under 0.16% (std dev/mean) at the blackbody temperature range from 20°C to 50°C and the ambient temperature change of š2.5°C. The RNU value was equaled 8.1% without any correction.
Źródło:
Pomiary Automatyka Kontrola; 2008, R. 54, nr 8, 8; 526-528
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda śledzenia obiektów w obrazach termowizyjnych z procedurą adaptacyjnego aktualizowania modelu obiektu
The enhanced sum of squared differences method for tracking objects in thermal vision pictures
Autorzy:
Bieszczad, G.
Sosnowski, T.
Orżanowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/156819.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
przetwarzanie obrazów
śledzenie obiektów
termowizja
image processing
object tracking
thermal vision
Opis:
Śledzenie obiektów jest coraz częściej stosowane w systemach wizyjnych używanych do ochrony mienia, kompresji sekwencji wideo czy w produkcji filmowej. Śledzenie obiektu polega na wyznaczeniu jego położenia na pewnej klatce obrazu, na podstawie znajomości jego położenia na poprzednich klatkach. Zadanie to jest szczególnie utrudnione, jeśli wymagany jest krótki czas wykonywania śledzenia. Ponadto w obrazie termowizyjnym nie można śledzić obiektów za pomocą metod stosowanych dla obrazu widzialnego. W artykule został omówiony nowy algorytm śledzenia obiektów w obrazie termowizyjnym polegający na modyfikacji metody Sum of Squared Differences.
Real-time object tracking is a critical task in many computer vision applications such as surveillance, object based video compression, or driver assistance. Object tracking is a process of finding a chosen object within a frame using the knowledge about its position in the previous frames. The most challenging issues encountered during visual object tracking are cluttered background, noise, occlusions and change in appearance of the tracked objects. This task is even more challenging when tracking is time constrained, and evaluation of the object position has to be performed in real-time. There exist many techniques for tracking objects but most of them are implemented in colour vision systems. Tracking algorithms for thermal vision systems have not been investigated well yet. This paper deals with adopting the sum of squared differences (SSD) tracking algorithm to thermal vision image sequences. Gradient based tracking methods, like SSD, evaluate target transition by finding changes between two consequent frames. The changes are estimated with gradients in space and time by finding the smallest SSD coefficient. This method is of relatively low computational complexity and can be used in real-time system. In the paper the enhanced SSD algorithm is presented. The enhancement consists in the conditional model update based on the SSDVar coefficient. There is also presented an experiment in which the traditional and enhanced SSD methods are compared.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 5, 5; 292-296
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytm śledzenia obiektów w obrazie termowizyjnym i jego implementacja w układzie FPGA
Hardware implementation of tracking algorithm on thermovision images in FPGA
Autorzy:
Bieszczad, G.
Sosnowski, T.
Orżanowski, T.
Kastek, M.
Powiązania:
https://bibliotekanauki.pl/articles/154009.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
śledzenie obiektów
przetwarzania obrazów
termowizja
FPGA
object tracking
image processing
thermovision
Opis:
W artykule przedstawiono algorytm śledzenia obiektów na obrazach termowizyjnych za pomocą zmodyfikowanej metody SSD oraz propozycję jego implementacji sprzętowej w module programowalnym FPGA. Zastosowanie technologii FPGA pozwoliło na zastosowanie kilku technik przyspieszania obliczeń. Moduły realizujące algorytm zostały zaprojektowane tak, by obliczenia prowadzony były w trybie pipeliningu. Ponadto w celu zwiększenia szybkości działania algorytmu zastosowane zostało zrównoleglenie obliczeń. W artykule opisano architekturę zaprojektowanego systemu przetwarzania obrazów i śledzenia obiektów na obrazie metodą SSD.
In the article the architecture of hardware implementation of SSD tracking algorithm for thermal images is proposed. Object tracking is a process of finding chosen object on the following frame using knowledge about its position in previous frames [1, 3]. Gradient based methods like Sum-of-Squared-Differences (SSD) localize targets by analyzing differences between consequent frames. Finding target movement is performed by searching minimum of cost function in space and time. Cost function in this approach is a sum of squared differences. Sum of squared differences coefficient is a measure of difference between two fragments of images and equals (1). If searched object was detected at point (x, y) in previous frame, finding its location in following frame would mean finding (u, v) for which SSD coefficient is the smallest. The picture fragment centered at (x, y) with size equal to the size of the object is treated as the object model. Point (u, v) will then be a centre of the object that is the most similar to the model. This object in new frame is the one found by the SSD algorithm. SSD object estimation is not always reliable, when object is obscured or noised. To distinct reliable position estimation from noisy one the special SSDVar (2) coefficient was developed. The algorithm to calculate SSD coefficient for set of image fragments was proposed to be implemented in hardware, using parallel computation for every compared image fragments. The architecture of parallelized SSD computation unit is shown on Fig. 4 and Fig. 5. Main parts of computation unit were simulated in Quartus II environment.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 8, 8; 654-656
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Termowizyjny celownik do broni strzeleckiej - budowa, parametry i wyniki badań
Thermal weapon sight - construction, parameters and test results
Autorzy:
Madura, H.
Sosnowski, T.
Bieszczad, G.
Piątkowski, T.
Orżanowski, T.
Firmanty, K.
Powiązania:
https://bibliotekanauki.pl/articles/236223.pdf
Data publikacji:
2009
Wydawca:
Wojskowy Instytut Techniczny Uzbrojenia
Tematy:
celownik termowizyjny
broń strzelecka
dating Thermography
shooting weapon
Opis:
W artykule został przedstawiony celownik termowizyjny do broni strzeleckiej klasyfikowany, jako kamera III generacji. Celownik pracuje w zakresie dalekiej podczerwieni (LWIR) i zbudowany jest na bazie matrycowego mikrobolometrycznego detektora podczerwieni ze stabilizacją temperatury w układzie Peltiera. Celownik termowizyjny został zbadany laboratoryjnie (w tym badania klimatyczne i wibracyjne) i wyniki badań potwierdziły zakładane parametry taktyczno-techniczne. Celownik poddano także specjalistycznym badaniom poligonowym w Wojskowym Instytucie Technicznym Uzbrojenia, gdzie prowadzono badania strzelaniem na siedmiu typach broni od kalibru 5,56 mm do 12,7 mm.
The paper presents the thermal weapon sight, which can be classified as 3-rd generation camera. The sight operates in the LWIR range and uses microbolometer focal plane array with thermoelectric temperature stabilizer. The sight has been thoroughly tested (including environmental and vibration tests) and the result confirmed its assumed technical and tactical characteristics. The sight was also tested at Military Institute of Armament Technology, where the shooting test were performed with different weapons of calibers ranging from 5.56 mm to 12.7 mm.
Źródło:
Problemy Techniki Uzbrojenia; 2009, R. 38, z. 109; 65-73
1230-3801
Pojawia się w:
Problemy Techniki Uzbrojenia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies