Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ochtyra, Adrian" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains
Autorzy:
Jarocińska, Anna M.
Kacprzyk, Monika
Marcinkowska-Ochtyra, Adriana
Ochtyra, Adrian
Zagajewski, Bogdan
Meuleman, Koen
Powiązania:
https://bibliotekanauki.pl/articles/2096269.pdf
Data publikacji:
2016-05-10
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Mountain meadows
vegetation condition
APEX
hyperspectal remote sensing
vegetation indices
biophysical parameters
Opis:
Information about vegetation condition is needed for the effective management of natural resources and the estimation of the effectiveness of nature conservation. The aim of the study was to analyse the condition of non-forest mountain communities: synanthropic communities and natural grasslands. UNESCO’s M&B Karkonosze Transboundary Biosphere Reserve was selected as the research area. The analysis was based on 40 field test polygons and APEX hyperspectral images. The field measurements allowed the collection of biophysical parameters - Leaf Area Index (LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and chlorophyll content - which were correlated with vegetation indices calculated using the APEX images. Correlations were observed between the vegetation indices (general condition, plant structure) and total area of leaves (LAI), as well as fraction of Absorbed Photosynthetically Active Radiation (fAPAR). The outcomes show that the non-forest communities in the Karkonosze are in good condition, with the synanthropic communities characterised by better condition compared to the natural communities.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2016, 20, 1; 21-27
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines
Autorzy:
Marcinkowska, Adriana
Zagajewski, Bogdan
Ochtyra, Adrian
Jarocińska, Anna
Raczko, Edwin
Kupková, Lucie
Stych, Premysl
Meuleman, Koen
Powiązania:
https://bibliotekanauki.pl/articles/2037399.pdf
Data publikacji:
2014-06-25
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Hyperspectral data
APEX
Karkonosze National Park
mapping/ classification
vegetation communities
Opis:
This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity. The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO). The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm. For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2014, 18, 2; 23-29
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies