Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "zbiory danych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Klasyfikacja chronionych w Polsce motyli z rodziny Papilionidae z wykorzystaniem wybranych topologii neuronowych
Classification of protected Papilionidae butterflies using selected neural network topology
Autorzy:
Boniecki, P
Mueller, W.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/883223.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
klasyfikacja
gatunki chronione
obrazy cyfrowe
sieci neuronowe sztuczne
paziowate
Papilionidae
uczenie sie
motyle
Opis:
Celem badań było porównanie zdolności klasyfikacyjnych modeli neuronowych, uczonych dwoma różnymi metodami: wzorcową oraz bezwzorcową. Klasyfikacji poddano wybrane owady należące do rodziny „Papilionidae”, które objęte są ochroną prawną na terenie Polski. Neuronowej klasyfikacji dokonano w oparciu o informację zakodowaną w postaci zbioru dwuwymiarowych obrazów owadów. Jako cechy reprezentatywne, stanowiące podstawę do klasyfikacji, przyjęto pięć dominujących kolorów występujących w ubarwieniu motyli. W celu porównawczym wygenerowano dwie topologie neuronowe: sieć typu MLP (ang. MultiLayer Perceptron: perceptron wielowarstwowy) uczonej technikami „z nauczycielem” orazsieæ Kohonena, która była uczona metodą „beznauczyciela”.
The aim of this study was to compare the classification ability of neural models, learned with two different ways: with reference and without reference. Selected insects subjected to classification belong to the family “Papilionidae”, and are a subject to legal protection in Poland. Neural classification was based on the information encoded in the form of a file of two-dimensional images of insects. As representatives of features, which form the basis of the classification, adopted were five dominant butterflies colors. For comparison two neural topologies were generated: a network type MLP (Multilayer Perceptron) learned by method "with the teacher" and a neural network type Kohonen, which was learned by method „without a teacher”.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 03; 23-26
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa identyfikacja dojrzalosci wybranych odmian jablek
Neural identification of ripeness of chosen varieties of apples
Autorzy:
Boniecki, P
Jakubek, A.
Kluza, T.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/884097.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
jablon Gala Must
jablon Lobo
jablon Rajka
owoce
jablka
dojrzalosc owocow
stopien dojrzalosci
identyfikacja
barwa owocow
skala BBCH
ksztalt owocow
wspolczynnik ksztaltu
zbiory danych
sieci neuronowe sztuczne
percepton czterowarstwowy
siec radialnych funkcji bazowych
probabilistyczna siec neuronowa
system JabVis 1.1
Opis:
Celem niniejszej pracy była identyfikacja poziomu dojrzałości wybranych odmian jabłek za pomocą sztucznych sieci neuronowych, dokonana na podstawie reprezentatywnych cech, pozyskanych metodami analizy obrazu. Aby można prawidłowo rozwiązać tak sformułowane zadanie, wymagane było zapoznanie się z metodami analizy obrazu oraz zagadnieniami klasyfikacji z wykorzystaniem modeli neuronowych. W celu wyjaśnienia tego problemu został wytworzony, zgodnie z wymaganiami inżynierii oprogramowania, neuronowy system informatyczny przeznaczony do identyfikacji, zdefiniowanych wcześniej, klas dojrzałości wybranych odmian jabłek.
The main aim of this research was to identify the level of ripeness of chosen varieties of apples using neural networks. The process was based on a set of selected features acquired by images analysis. To secure one' s object it was necessary to get to know the available and current image analysis methodologies as well as the neural networks' classification abilities. The neural computer system has been designed, regarding all requirements of software engineering in order to develop an implementation of the model proposed during the phase described above. The software is capable to identify the ripeness of an apple from the chosen varieties.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2010, 06; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies