Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wybór pracy" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Applying latent class analysis in the identification of occupational accident patterns
Autorzy:
Nowakowska, Marzena
Pajęcki, Michał
Powiązania:
https://bibliotekanauki.pl/articles/1919012.pdf
Data publikacji:
2020
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
occupational accident
casualties
variable selection
classification
wypadek przy pracy
ofiara
wybór zmiennych
klasyfikacja
Opis:
Purpose: The objective of the study is to use selected data mining techniques to discover patterns of certain recurring mechanisms related to the occurrence of occupational accidents in relation to production processes. Design/methodology/approach: The latent class analysis (LCA) method was employed in the investigation. This statistical modeling technique enables discovering mutually exclusive homogenous classes of objects in a multivariate data set on the basis of observable qualitative variables, defining the class homogeneity in terms of probabilities. Due to a bilateral agreement, Statistics Poland provided individual record-level real data for the research. Then the data were preprocessed to enable the LCA model identification. Pilot studies were conducted in relation to occupational accidents registered in production plants in 2008-2017 in the Wielkopolskie voivodeship. Findings: Three severe accident patterns and two light accident patterns represented by latent classes were obtained. The classes were subjected to descriptive characteristics and labeling, using interpretable results presented in the form of probabilities classifying categories of observable variables, symptomatic for a given latent class. Research limitations/implications: The results from the pilot studies indicate the necessity to continue the research based on a larger data set along with the analysis development, particularly as regards selecting indicators for the latent class model characterization. Practical implications: The identification of occupational accident patterns related to the production process can play a vital role in the elaboration of efficient safety countermeasures that can help to improve the prevention and outcome mitigation of such accidents among workers. Social implications: Creating a safe work environment comprises the quality of life of workers, their families, thus affirming the enterprises' principles and values in the area of corporate social responsibility. Originality/value: The investigation showed that latent class analysis is a promising tool supporting the scientific research in discovering the patterns of occupational accidents. The proposed investigation approach indicates the importance for the research both in terms of the availability of non-aggregated occupational accident data as well as the type of value aggregation of the variables taken for the analysis.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2020, 146; 339-355
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies