Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "drgania górotworu" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Artificial Neural Network Optimized by Modified Particle Swarm Optimization for Predicting Peak Particle Velocity Induced by Blasting Operations in Open Pit Mines
Autorzy:
Bui, Xuan‑Nam
Nguyen, Hoang
Nguyen, Truc Anh
Powiązania:
https://bibliotekanauki.pl/articles/2020892.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
blast-induced ground vibration
peak particle velocity
open pit mine
artificial neural network
modified particle swarm optimization
metaheuristic algorithms
wibracje gruntu wywołane podmuchami
drgania górotworu
górnictwo odkrywkowe
sztuczne sieci neuronowe
Opis:
Blasting is an indispensable part of the open pit mining operations. It plays a vital role in preparing the rock mass for subsequent operations, such as loading/unloading, transporting, crushing, and dumping. However, adverse effects, especially blast-induced ground vibrations, are considered one of the most dangerous problems. In this study, artificial intelligence was supposed to predict the intensity of blast-induced ground vibration, which is represented by the peak particle velocity (PPV). Accordingly, an artificial neural network was designed to predict PPV at the Coc Sau open pit coal mine with 137 blasting events were collected. Aiming to optimize the ANN model, the modified version of the particle swarm optimization (MPSO) algorithm was applied to optimize the ANN model for predicting PPV, called the MPSO-ANN model. For the comparison purposes, two forms of empirical equations, namely United States Bureau of Mining (USBM) and U Langefors - Kihlstrom, were also developed to predict PPV and compared with the proposed MPSO-ANN model. The results showed that the proposed MPSO-ANN model provided a better performance with a mean absolute error (MAE) of 1.217, root-mean-squared error (RMSE) of 1.456, and coefficient of determination (R2) of 0.956. Meanwhile, the empirical models only provided poorer performances with an MAE of 1.830 and 2.012, RMSE of 2.268 and 2.464, and R2 of 0.874 and 0.852 for the USBM and U Langefors – Kihlstrom empirical models, respectively.
Źródło:
Inżynieria Mineralna; 2021, 2; 79--90
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies