Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Viet, Le Hoang" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A Lasso and Elastic-Net Regularized Generalized Linear Model for Predicting Blast-Induced Air Over-pressure in Open-Pit Mines
Model Lasso i uogólniony model liniowy elastycznej siatki do prognozowania nadciśnienia wywołanego wybuchem w kopalniach odkrywkowych
Autorzy:
Bui, Xuan‑Nam
Nguyen, Hoang
Tran, Quang Hieu
Bui, Hoang‑Bac
Nguyen, Quoc Long
Nguyen, Dinh An
Le, Thi Thu Hoa
Pham, Van Viet
Powiązania:
https://bibliotekanauki.pl/articles/318532.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
Lasso model
kopalnia odkrywkowa
wybuchy
open pit mines
explosives
Opis:
Air overpressure (AOp) is one of the products of blasting operations in open-pit mines which have a great impact on the environment and public health. It can be dangerous for the lungs, brain, hearing and the other human senses. In addition, the impact on the surrounding environment such as the vibration of buildings, break the glass door systems are also dangerous agents caused by AOp. Therefore, it should be properly controlled and forecasted to minimize the impacts on the environment and public health. In this paper, a Lasso and Elastic-Net Regularized Generalized Linear Model (GLMNET) was developed for predicting blast-induced AOp. The United States Bureau of Mines (USBM) empirical technique was also applied to estimate blast-induced AOp and compare with the developed GLMNET model. Nui Beo open-pit coal mine, Vietnam was selected as a case study. The performance indices are used to evaluate the performance of the models, including Root Mean Square Error (RMSE), Determination Coefficient (R2), and Mean Absolute Error (MAE). For this aim, 108 blasting events were investigated with the Maximum of explosive charge capacity, monitoring distance, powder factor, burden, and the length of stemming were considered as input variables for predicting AOp. As a result, a robust GLMNET model was found for predicting blast-induced AOp with an RMSE of 1.663, R2 of 0.975, and MAE of 1.413 on testing datasets. Whereas, the USBM empirical method only reached an RMSE of 2.982, R2 of 0.838, and MAE of 2.162 on testing datasets.
Źródło:
Inżynieria Mineralna; 2019, 21, 2/2; 8-20
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of Unmanned Aerial Vehicles for 3D topographic Mapping and Monitoring the Air Quality of Open-pit Mines
Wykorzystanie bezzałogowych statków powietrznych (dronów) do monitorowania jakości powietrza w odkrywkowych kopalniach węgla kamiennego
Autorzy:
Bui, Xuan‑Nam
Lee, Changwoo
Nguyen, Quoc Long
Adeel, Ahmad
Cao, Xuan Cuong
Nguyen, Viet Nghia
Le, Van Canh
Nguyen, Hoang
Le, Qui Thao
Duong, Thuy Huong
Nguyen, Van Duc
Powiązania:
https://bibliotekanauki.pl/articles/317913.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
drony
jakość powietrza
kopalnie odkrywkowe
unmanned aerial vehicles
air quality
open pit mines
Opis:
Recently remarkable advancement development of unmanned aerial vehicles (UAVs) has been observed and their applications have been shown in many fields such as agriculture, industry, and environmental management. However, in the mining industry, the application of UAV technology remains potential. This paper presents a low-cost unmanned aerial vehicle technology-based system for 3D mapping and air quality monitoring at open-pit mine sites in Vietnam. The system includes several dust sensors that are mounted on a low-cost rotary-wing type UAV. The system collects a variety of data, mainly images and airborne pollutant concentrations. To evaluate the performance of the proposed system, field tests were carried out at the Coc Sau coal mine. Based on the images transmitted to the ground monitoring station, large scale 3D topographic maps were successfully modeled. In addition, sensors mounted on the UAV system were able to monitor the levels of environmental variables associated with the air quality within the pit such as temperature, dust, CO, CO2, and NOx. The field test results in this study illustrate the applicability of the low-cost UAV for the 3D mapping and the air quality monitoring at large and deep coal pits with relatively high accuracy.
Źródło:
Inżynieria Mineralna; 2019, 21, 2/2; 223-239
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies