- Tytuł:
- Radio k-colorings of paths
- Autorzy:
-
Chartrand, Gary
Nebeský, Ladislav
Zhang, Ping - Powiązania:
- https://bibliotekanauki.pl/articles/743194.pdf
- Data publikacji:
- 2004
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
radio k-coloring
radio k-chromatic number - Opis:
-
For a connected graph G of diameter d and an integer k with 1 ≤ k ≤ d, a radio k-coloring of G is an assignment c of colors (positive integers) to the vertices of G such that
d(u,v) + |c(u)- c(v)| ≥ 1 + k
for every two distinct vertices u and v of G, where d(u,v) is the distance between u and v. The value rcₖ(c) of a radio k-coloring c of G is the maximum color assigned to a vertex of G. The radio k-chromatic number rcₖ(G) of G is the minimum value of rcₖ(c) taken over all radio k-colorings c of G. In this paper, radio k-colorings of paths are studied. For the path Pₙ of order n ≥ 9 and n odd, a new improved bound for $rc_{n- 2}(Pₙ)$ is presented. For n ≥ 4, it is shown that
$rc_{n-3}(Pₙ) ≤ \binom{n-2} {2}$
Upper and lower bounds are also presented for rcₖ(Pₙ) in terms of k when 1 ≤ k ≤ n- 1. The upper bound is shown to be sharp when 1 ≤ k ≤ 4 and n is sufficiently large. - Źródło:
-
Discussiones Mathematicae Graph Theory; 2004, 24, 1; 5-21
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki