Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "perfect Italian domination" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
A New Upper Bound for the Perfect Italian Domination Number of a Tree
Autorzy:
Nazari-Moghaddam, Sakineh
Chellali, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/32304138.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Italian domination
Roman domination
perfect Italian domination
Opis:
A perfect Italian dominating function (PIDF) on a graph $G$ is a function $ f : V (G) \rightarrow \{ 0, 1, 2 \} $ satisfying the condition that for every vertex u with $f(u) = 0$, the total weight of $f$ assigned to the neighbors of $u$ is exactly two. The weight of a PIDF is the sum of its functions values over all vertices. The perfect Italian domination number of $G$, denoted $ \gamma_I^p (G) $, is the minimum weight of a PIDF of $G$. In this paper, we show that for every tree $T$ of order $ n \ge 3 $, with $ \mathcal{l} (T) $ leaves and $s(T)$ support vertices, \( \gamma_I^p (T) \ge \tfrac {4n- \mathscr{l}(T) + 2s (T) - 1}{5} \), improving a previous bound given by T.W. Haynes and M.A. Henning in [Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177].
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 1005-1022
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies