Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "flotation column" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Simultaneous optimization of flotation column performance using genetic evolutionary algorithm
Autorzy:
Nakhaei, F.
Irannajad, M.
Yousefikhoshbakht, M.
Powiązania:
https://bibliotekanauki.pl/articles/110806.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation column
optimization
genetic algorithm
non-linear regression
upgrading curve
Opis:
Column flotation is a multivariable process. Its optimization guarantees the metallurgical yield of the process, expressed by the grade and recovery of the concentrate. The present work aimed at applying genetic algorithms (GAs) to optimize a pilot column flotation process which is characterized by being difficult to be optimized via conventional methods. A non-linear mathematical model was used to describe the dynamic behavior of the multivariable process. The solution of the optimization problem using conventional algorithms does not always lead to convergence because of the high dimensionality and non-linearity of the model. In order to deal with this process, the use of a genetic evolutionary algorithm is justified. In this way, GA was coupled with the multivariate non-linear regression (MNLR) of the column flotation metallurgical performance as a fitting function in order to optimize the column flotation process. Then, this kind of intelligent approach was verified by using mineral processing approaches such as Halbich’s upgrading curve. The aim of the optimization through GAs was searching for the process inputs that maximize the productivity of copper in the Sarcheshmeh pilot plant. In this case, the simulation optimization problem was defined as finding the best values for the froth height, chemical reagent dosage, wash water, air flow rate, air holdup, and Cu grade in rougher and column feed streams. The results indicated that GA was a robust and powerful search method to find the best values of the flotation column model parameters that lead to more reliable simulation predictions at a reasonable time. Based on the grade–recovery Halbich upgrading curve, the MNLR model coupled with GA can be used for determination of the flotation optimum conditions.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 874-893
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison between neural networks and multiple regression methods in metallurgical performance modeling of flotation column
Autorzy:
Nakhaei, F.
Irannajad, M.
Powiązania:
https://bibliotekanauki.pl/articles/110822.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
metallurgical performance
separation
neural networks
nonlinear regression
prediction
flotation column
Opis:
Artificial neural networks are relatively new computational tools which their inherent ability to learn and recognize highly non-linear and complex relationships makes them ideally suited in solving a wide range of complex real-world problems. In this research, different techniques (Linear regression, Non-linear regression, Back propagation neural network, Radial Basis Function for the estimation of Cu grade and recovery values in flotation column concentrate are studied. Modeling is performed based on 90 datasets at different operating conditions at Sarcheshmeh pilot plant, a copper concentrator in Iran, which include chemical reagents dosage, froth height, air and wash water flow rates, gas holdup and Cu grade in the rougher feed and flotation column feed, column tail and final concentrate streams. The results of models were also expressed and analyzed by intuitive graphics. The results indicated that a four-layer BP network gave the most accurate metallurgical performance prediction and all of the neural network models outperformed non-linear regression in the estimation process for the same set of data.
Źródło:
Physicochemical Problems of Mineral Processing; 2013, 49, 1; 255-266
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies