Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Opaliński, Andrzej" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Artificial Neural Networks as a Tool for Supporting a Moulding Sand Control System Based on the Dependency between Selected Moulding Sand Properties
Autorzy:
Mrzygłód, Barbara
Jakubski, Jarosław
Opaliński, Andrzej
Regulski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/24201264.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
artificial neural network
decision support
green moulding sand
compactibility
Opis:
The article presents the potential for using artificial neural networks to support decisions related to the rebonding of green moulding sand. The basic properties of the moulding sand tested in foundries are discussed, especially compactibility as it gives the most information about the quality of green moulding sand. First, the data that can predict the compactibility value without the need for testing are defined. Next, a method for constructing an artificial neural network is presented and the network model which produced the best results is analysed. Additionally, two applications were designed to allow the investigation results to be searchable by determining the range of values of the moulding sand parameters.
Źródło:
Journal of Casting & Materials Engineering; 2023, 7, 2; 15--21
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies