Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "type III" wg kryterium: Temat


Tytuł:
The Tendencies and Timeline of the Solar Burst Type II Fragmented
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412634.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
We report the timeline of the solar radio burst Type II that formed but fragmented at certain point based on the eruption of the solar flare on 13th November 2012 at 2:04:20 UT. The active region AR 1613 is one of the most active region in 2012. It is well known that the magnetic energy in the solar corona is explosively released before converted into the thermal and kinetic energy in solar flares. In this work, the Compound Astronomical Low-frequency, Low-cost Instrument for Spectroscopy Transportable Observatories (CALLIISTO) system is used in obtaining a dynamic spectrum of solar radio burst data. There are eight active regions and this is the indicator that the Sun is currently active. Most the active regions radiate a Beta radiation. The active regions 1610, 1611 and 1614 are currently the largest sunspots on the visible solar disk. There is an increasing chance for an isolated M-Class solar flare event. It is also expected that there will be a chance of an M flare, especially from AR 1614 and 1610. Although these two observations (radio and X-rays) seem to be dominant on the observational analysis, we could not directly confirmed that this is the only possibility, and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles. In conclusion, the percentage of energy of solar flare becomes more dominant rather than the acceleration of particles through the Coronal Mass Ejections (CMEs) and that will be the main reason why does the harmonic structure of type II burst is not formed. This event is one fine example of tendencies solar radio burst type III, which makes the harmonic structure of solar radio burst type II fragmented.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 12; 84-102
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on a Broken Solar Burst Type II during High Activities in AR1613 on 13th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411666.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 8-15
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Alternating of Solar Radio Burst Type III and IV of Thermal and Non-Thermal Plasma Radiation
Autorzy:
Hamidi, Z. S.
Husien, Nurul Hazwani
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1193005.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
burst
low frequency
solar radio
type III
type IV e-CALLISTO
Opis:
A preliminary correlation study of the solar burst type III with a type Iv solar burst of has been made. On the basis of this study and in combination with the observation in radio emission, an interpretation of the mechanism of the occurrence of this event has been proposed. We have noted that an individual type III burst also can be observed at 13:54-13:58 UT from 500 MHz. Based on 3 days observation beginning from 31st March 2015, the solar activity is gradual increased. The highest solar flare can be observed is only a class of M8 flare. There was a CMEs event that directed to the Earth is detected. From the selected event, although theoretically solar radio burst type III is alternating with type IV solar burst. This huge explosion generated the M-class flare which can affect the Earth and satellites. The solar wind velocity recorded is 384.2 km/second while the density of protons is 3.6 protons/cm3. The total magnetic field during this event also quite big which is 4.6nT. The alternating of solar burst type III and IV would probably depends on the tendencies to form the CMEs event. The morphology of thermal and non-thermal flare plasma is of particular significance because it holds many important signatures of the energy release process.
Źródło:
World Scientific News; 2016, 31; 88-99
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Statistical Study of Nine Months Distribution of Solar Flares
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412246.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
Solar flare is one of the solar activities that take place in the outermost layer of the corona. Solar flares can heat the material to several million degrees in just a few minutes and at the same time they release the numerous amount of energy. It is believed that a change of magnetic field lines potentially creates the solar flares. The objectives of the study are to identify and compare the types of solar flares (in X-Ray) region and to improve understanding of solar flares. Data are taken from the NOAA website, from the United States Department of Commerce, NOAA, Space Weather Prediction Center (SPWC). Solar radio flux readings were merged together with the three classes and a total of nine graphs were plotted. In illustrating the relationship of solar radio flux and solar flares, it can be explained by studying the range values of flux corresponding to flares values. From this case study, it was found that the minimum value of solar radio flux in order for the flares to occur is equivalent 68 x 10-22Wm-2Hz-1. Thus, whenever the values of solar radio flux are high, there should be a higher number of flares produced by the sun. The overall range of solar radio flux recorded in this study ranging from 68 x 10-22 Wm-2Hz-1 to 96 x 10-22 Wm-2Hz-1. Observing and collecting data from the Sun and develop our very own new prediction methods will leads the accuracy of the prediction of the behavior of the Sun more precisely.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 14, 1; 1-11
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Scenario of Solar Radio Burst Type III During Solar Eclipse on 14th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411752.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
A compact solar flare was observed during a total solar eclipse event on 13-14 November 2012. This phenomenon is beginning in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. During the eclipse, the highest magnitude was 1.0500, occurring only 12 hours before perigee, with the maximum eclipse totality lasting just over four minutes. Considering the observational facts, the solar radio burst type III can be detected from the National Space Centre Malaysia by the Compound Low Cost Low Frequency Transportable Observatory (CALLISTO) system from 00:00 UT –1:30 UT. The group and individual solar burst type III can be detected in the region of 150-400 MHz. However, the eclipse cannot be observed from our site. From the observation, it was found that the eruption in the active region is becoming more active with a tens of groups solar radio burst type III can be observed. It continuing bursting within the first one hour. The sunspot number exceeds to 108 and solar wind speed 454.9 km/sec. Still the Sun remains active and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 135-143
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of Solar Prominence on 4th September 2015 and the Solar Burst Type III and IV
Autorzy:
Norsham, N. A.
Hamidi, Z. S.
Mazlan, Muzamir
Shariff, N. N. M.
Yusofl, N. S.
Jafni, A. I.
Khalib, N. M. F.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192156.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar prominences
active region (AR)
solar burst
type III
type IV
e CALLISTO
Opis:
This article will focus on the solar prominences that occur during the 4th September 2015. On that day, there were two sunspots on the surface of the sun, which were AR2409 and AR2410. These two active regions did not produce any threat for strong flare and thus the solar activity was very low. The prominences that will be focused were both occurred at 0353 UT and 0427 UT respectively. There were minor (G1) geomagnetic storm observed on that day. For solar prominences that occurred at 0353 UT, solar radio burst type (SRBT) IV was detected by CALLISTO spectrometer. From the CALLISTO, two bursts at low intensities with the duration of about 7 minutes for the first burst of 280-320 MHz and 6 minutes for the second burst of 360-430 MHz were observed. For the first burst, energy calculated was between 1.855 x 10 -25 J and 2.12 x 10 -25 J with the drift rate of 0.095 MHz/s. For second burst, the energy obtained was between 2.385 x 10 -25 J and 2.849 x 10 -25 J with the drift rate of 0.194 MHz/s. At 0427 UT, SRBT III was recorded with a frequency of 240-350 MHz with the energy which was obtained between 1.590 x 10 -25 J and 2.319 x 10 -25 J. The drift rate of this type of burst was 0.61 MHz/s. During this event, the solar wind value was 499.3 km/Sec with the proton density of 15.1 protons/cm3.
Źródło:
World Scientific News; 2016, 45, 2; 264-275
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the Optical Image of the Solar Prominence with the Formation of Solar Radio Burst Type III on 3rd September 2015
Autorzy:
Hamidi, Z. S.
Norsham, N. A.
Mazlan, Muzamir
Yusof, N. S.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192670.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar prominences
solar radio burst
type III
AR2407
e CALLISTO
Opis:
Solar radio burst in the range of 220 - 400 MHz have been correlated with the optical solar prominence phenomena covering the presence sunspot minimum. In combination of the observation in radio emission and the basis of this study, the occurrence of the event has been proposed. The active region of the prominence was AR2407. An individual type III burst was observed at 08:21 UT. The burst lasts for 20 seconds with a drift rate of 4.25 MHz/s. This burst was recorded by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) at Switzerland. The CALLISTO spectrometer is a spectrometer system that has been installed all around the world to observe the activity of the sun for 24 hours. The activation may be caused by shock waves issuing from prominences and solar flares. The loop prominences can be observed by using the optical telescope and is the initiates points of the following important flare that exist for 6 hours. The active region on the Sun experience the gradual build up of the magnetic field which gives rise to the sunspots, prominences and loops in the corona and produce the powerful outburst explosions.
Źródło:
World Scientific News; 2016, 47, 2; 230-240
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption
Autorzy:
Ali, M. Omar
Shariff, N. N. M.
Hamidi, Z. S.
Husien, Nurul Hazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192085.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Coronal Mass Ejections (CMEs)
solar burst type III
magnetic filament
Opis:
During solar activity the energy particles of the sun released due to solar flare, Coronal Mass Ejections (CMEs), coronal heating as well as sunspot. Solar radio burst will be observed in the presence of solar activity such solar flare, CMEs and solar prominence as the indicator for those events to happen. During the peak of solar cycle, the filaments are present due to the active magnetic field and solar storm’s explosion. This type of solar radio burst normally can be seen in the phase of impulsive solar flare. Therefore, it is crucial to understand field line connectivity in flare and the access of flare accelerated particle to the earth. In this study, we highlighted on the observation of solar radio burst type III on 9th of May at 05:31 UT till 05:44 UT. The event was successfully recoded by e-CALLISTO using BLEINSW radio telescope. The Solar Radio Burst Type III that had been observed was related to the Coronal Mass Ejections and the mechanisms that trigger the events have been discussed. It is shown that the CMEs is believed to happen because of the magnetic filament that connected to active region (AR) 2339 was erupted, and combination of two wild filament produced a bright CMEs. Fortunately, the expanding cloud does not appear to be heading for earth.
Źródło:
World Scientific News; 2016, 37; 168-178
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the Radio Frequency Interference (RFI) in the Region of Solar Burst Type III Data At Selected CALLISTO Network
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412319.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst type III
Radio Frequency Interference (RFI)
Opis:
Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO) is a global network of spectrometer system with the purpose to observe the Sun’s activities. There are 25 stations that are used for this purpose. Radio Frequency Interference (RFI) is a major obstacle when performing observation with CALLISTO. We have confirmed at least 2 stations out of 10 stations with a complete overview spectral (OVS) made available to us showed clear detection of these consistent types of RFI for each specific region. In Malaysia, these RFI are also clearly detected. The major RFI affecting CALLISTO within radio astronomical windows below 1 GHz are local electronic system specifically radio navigation (at 73.1 MHz and 75.2 MHz), broadcasting (at (i) 151 MHz, (ii) 151.8 MHz and 152 MHz), aeronautical navigation (at (i) 245.5 MHz, (ii) 248.7 MHz and (iii) 249 MHz and fixed mobile at (i) 605 MHz, (ii) 608.3 MHz, (iii) 612.2 MHz, (iv) 613.3 MHz). It is obviously showed that all sites within this region are free from interference at 320-330 MHz and is the best specific region to be considered for solar burst monitoring. We also investigate the effect of RFI on detection of solar burst. We have considered type III solar bursts on 9th March 2012 in order to measure the percentage of RFI level during the solar burst. The RFI level is as low as 6.512 % to 80.769 % above solar burst detection.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 10; 38-45
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411677.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar flare
low frequency
radio wavelength
solar burst
type III
CALLISTO
Opis:
The eruption mechanism of solar flares and type III are currently an extremely active area of research, especially during the solar cycle is towards maximum. In this case, the total energy of solar burst type III is of the order of solar flare with the explosion of the energy can up to 1015 ergs. The solar flare event is one of the most spectacular explosions that still be on-going study in the solar physics world. This event occurred at 2:000 UT on 15th April 2012 is due to the explosion of the magnetic energy in from the chromosphere and converted into the heating, mass motion and particle acceleration which can be detected by solar radio burst type III. In this work, we will highlight our first light detection of very tiny solar radio burst type III, which has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system at 5:53:23. The region of the data is from 150 − 400 MHz in radio region. This burst is drifted from 150 MHz till 260 MHz. It represents a total energy of 6.2035 × 10-7 eV − 1.0753 × 10-6 eV. This fast drift burst is a continuity of the acceleration of the particles which is intermittent, and can be observed since the explosion of the solar flare. Although the burst is very tiny, it is still significant because this burst is the first detection of a single type III burst from our site. Still, the acceleration of the particles can be detected from Earth in the radio region within 3 hours period of observation at the post stage of solar flare.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 1; 51-58
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Selected Solar Radio Bursts Based on Solar Activity Detected by e- CALLISTO (Malaysia)
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412630.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
type IV
type V
type U
e-CALLISTO
Opis:
One of the main reasons to study more about the dynamics of solar radio bursts is because solar these bursts can interfere with the Global Positioning System (GPS) and communications systems. More importantly, these bursts are a key to understand the space weather condition. Recent work on the interpretation of the low frequency region of a main solar burst is discussed. Continuum radio bursts are often related to the solar activities such as an indication of the formation of sunspot, impulsive phase of solar flares and Coronal Mass Ejections (CMEs) and their frequencies correspond to the densities supposed to exist in the primary energy release volume. Specifically, solar burst in low frequency play an important role in interpretation of Sun activities. In this work, we have selected few solar bursts that successfully detected by our station at the National Space Centre, Banting Selangor. Our objective is to correlate the solar burst with Sun activities by looking at the main sources that responsibility with the trigger of solar burst. It is found that type II burst is dominant with Coronal Mass Ejections (CMEs), type III burst associated with solar flare, IV burst with the formation of active region and type U burst high solar flare. We believed that this work is a good start to monitor Sun’s activities in Malaysia as equatorial country.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 144-159
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31st August 2015
Autorzy:
Hamidi, Z. S.
Norsham, N. A.
Mazlan, Muzamir
Yusof, N. S.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1182942.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar prominences
complex solar radio burst
type iii
ar2403
e callisto
Opis:
In this event, a solar radio burst in the range of 45-165 MHz with energy of 〖2.982 x 10〗^(-26) to 〖1.093 x 10〗^(-25) Joule with 0.8 MHz/ second have been correlated with the optical solar prominence. In combination of the optical, radio and X-ray observation, the occurrence of the event has been proposed. The active region of the prominence was AR2403. An individual type III burst was observed at 19:40 UT. The burst lasts for 15 minutes with a drift rate of 0.8 MHz/s. This burst was recorded by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) at Almaty Site. From 29th August 2015 onwards, the total magnetic flux increases gradually to over four-fold the initial value during development and levels off around 29th August 2015. It was found that B3 solar flare, followed by a slow coronal mass ejection (CME), is released from NOAA 2403 on 31st August 2015. The region is beyond -30 longitude at the time of the flare, making it impossible to reliably measure any magnetic properties involving gradients. The overall increase of Beff prior to the flare is indicative of an increase in polarity mixing within the AR, which has been shown to be related to flaring. Understanding of the exact nature of the initiation of these events is still incomplete.
Źródło:
World Scientific News; 2016, 49, 2; 272-282
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Occurrences Rate of Type II and III Solar Radio Bursts at Low Frequency Radio Region 45 − 870 MHz
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412187.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type II
type III
solar flare
Coronal Mass Ejections
CMEs
Opis:
Observations of type II and III solar bursts indicate that while type III bursts may appear at any altitude, from the very low corona into interplanetary space, type II solar bursts do not act the same way. This work focuses on recent observations in the radio region on the low frequency region from 45 MHz to 870 MHz. Our analysis employed the accuracy of the daily solar burst measurements of e-CALLISTO network. It was found that solar burst type II explode quite minimum with 1-2 events from 2006 - 2010. However, the data 2011 for solar burst type II increases drastically with 16 events has been recorded. The occurrences of Coronal Mass Ejections (CMEs) events are also increasing up to four times in 2011. Most of the both events can be observed in the range of 150 MHz till 500 MHz. Overall, we can say that the range of photon energy for solar burst type III is between 7.737 x 10-7 eV to 1.569 x 10-6 eV. In the case of solar burst type II, the distribution of energy is much smaller with 1.596 x 10-6 eV to 6.906 x 10-6 eV. Detailed investigation of solar burst will concern the 2011 data seem to show a significant trend for both types. We showed that the increasing of both solar burst events via years implies directing an increasing of solar activities including sunspot number, solar flare and Coronal Mass Ejections (CMEs) events. It is expected that both types will increase gradually in the beginning of 2014.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 18; 103-112
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Antenna Temperature and Radar Cross Section of Log Periodic Dipole Antenna
Autorzy:
Hamidi, Z. S.
Saad, M. Azren Mat
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192599.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Log Periodic Dipole Antenna
type III
radio region
antenna temperature radar cross section
Opis:
The LPDA antenna because it is very suitable and economic amount the types of antennas. It consists of an array of dipoles in which their lengths and spacing are arranged in a log periodic manner, but not all elements in the system are active on a single frequency of operation. The temperature or Antenna Noise Temperature depends on its gain pattern and the thermal environment that it is placed in. We need to design an antenna that can detect the data and monitor the solar burst type III in radio region. It must be sensitive to a broad frequency range and angular distribution of the incident radio pulse and capable to handle the noise issue that is necessary to gain the pure signal. With large instantaneous bandwidths and high spectral resolutions, these instruments will provide increased imaging sensitivity and enable detailed measurements of the dynamic solar burst. For standardized the time, GPS clock is used to control the sampling time of the spectrometer and a tracking controller control the antenna direction. In conclusion, LPDA is the most practical antennas provide general broadband transmission and reception in a wide range of frequency.
Źródło:
World Scientific News; 2016, 55; 126-136
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies