Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Omar, S" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
The Formation of Fundamental Structure of Solar Radio Burst Type II Due X6.9 Class Solar Flare
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1190115.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
type II
radio region
X-ray region
solar flare
Coronal Mass Ejections (CMEs)
Opis:
A vigorous solar flare event marked on the spectrometer of the CALLISTO data, being one of the highest solar flare event that successfully detected. The formation of solar burst type II in meter region and their associated with X6. 9-class solar flares have been reported. The burst has been observed at the Blein Obsevatory, Switzerland, which detected by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) system in the range of 170-870 MHz in the two polarizations of left and right circular polarization. It occurred between 08:01 UT to 08:08 UT within 7 minutes. The Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory CALLISTO spectrometer is a solar dedicated spectrometer system that has been installed all over the world to monitor the Sun activity in 24 hours. The growth of this burst is often accompanied by abundance enhancement of particles which may take the form of multiple independent drifting bands or other forms of fine structure. Due to the results, the drift rate of this burst is 85.71 MHz s-1, which is considered as a fast drift rate. The burst detected using CALLISTO also being compared to results detected by X-ray GOES data. Both different electromagnetic spectrum shows the exact time. The observations of the burst being discussed in details.
Źródło:
World Scientific News; 2016, 35; 30-43
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heart-shape Active Region 2529 Producing Strong M6.7 class Solar Flare and Gradual Coronal Mass Ejections
Autorzy:
Hamidi, Z. S.
Omar Ali, M.
Nurul, Hazwani Husien
Sabri, S. N. U.
Zainol, N. H.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1179601.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Gradual Coronal Mass Ejections
Heart-shape active region
Sun
X-ray region
solar flare
Opis:
The Centre of the Sun is very important to be study because this layer is where the nuclear reaction will be occurred. During large event pre-flare usually continues a few minutes and followed by impulsive phase about 3 to 10 minutes. Solar storms such as solar flare and Coronal Mass Ejections are frequently occurred on the area of the Sun that have strong magnetic field or known as active region The release of the stored free magnetic energy that probably drives a CME can take many forms including (predominantly) mechanical in the form of an expanding CME and erupting filament, electromagnetic emission in the form of a flare, and also in the acceleration of energetic particles, magnetic field reconfiguration and bulk plasma motion. In this study, the data of active region of the Sun was taken from official website of the Langkawi National Observatory. The image of the active region was observed by using 11-inch Celestron telescope with solar filter. This data confirms that there was a strong M class of solar flare during the day due to eruption of AR 2529 was occurred on 18th of April. From the x-ray flux data also, it can be observed that few days before M6.7 class solar flare occurred, there were several C classes of flare. The evolution of small AR 2529 to a big heart-shape forms an eruption that producing strong M6.7 class of flare and three gradual CMEs. This strong flare caused significant impact around the high technologies of Pacific Ocean by fading the signal at frequencies below 15 MHz.
Źródło:
World Scientific News; 2017, 74; 181-193
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geo-effective Disturbances from the “Beta-Gamma-Delta” Magnetic Fields on Active Region AR 2403
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zainol, N. H.
Ali, M. Omar
Hussien, Nurul Hazwani
Powiązania:
https://bibliotekanauki.pl/articles/1192069.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Solar Radio Burst Type IV
X-ray region
Solar flare
active region AR 2403
Opis:
This moving solar radio burst type IV, which lies in between 980 – 1260 MHZ was observed using Compound Astronomical Low-Cost Low- Frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer and will discussed in detail. CALLISTO system was used and the data were recorded. From BLEN5M’s Radio Flux Density data, it shown that a brief description of the formation of a dynamic formation of solar radio burst type IV due to an active region, AR 2403. This event proved that solar radio burst type IV has a broadband continuum features and has strong pulsations in some range of time. In this event it was took about 8 minutes and it can be high in possibility solar flare and CMEs event followed due to this event. AR 2403 remained active and produced an X- class solar flares and it showed “Beta- Gamma-Delta” magnetic field that gives solar flares which can make geo-effective disturbance to our earth satellite and we have to investigate how plasma – magnetic field in the solar corona which can produce suprathermal electron pulsation about 8 minutes. In this event, it has solar wind speed in 364.8 km/sec and solar wind density in 11.0 protons/cm3.
Źródło:
World Scientific News; 2016, 37; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption
Autorzy:
Ali, M. Omar
Shariff, N. N. M.
Hamidi, Z. S.
Husien, Nurul Hazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192085.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Coronal Mass Ejections (CMEs)
solar burst type III
magnetic filament
Opis:
During solar activity the energy particles of the sun released due to solar flare, Coronal Mass Ejections (CMEs), coronal heating as well as sunspot. Solar radio burst will be observed in the presence of solar activity such solar flare, CMEs and solar prominence as the indicator for those events to happen. During the peak of solar cycle, the filaments are present due to the active magnetic field and solar storm’s explosion. This type of solar radio burst normally can be seen in the phase of impulsive solar flare. Therefore, it is crucial to understand field line connectivity in flare and the access of flare accelerated particle to the earth. In this study, we highlighted on the observation of solar radio burst type III on 9th of May at 05:31 UT till 05:44 UT. The event was successfully recoded by e-CALLISTO using BLEINSW radio telescope. The Solar Radio Burst Type III that had been observed was related to the Coronal Mass Ejections and the mechanisms that trigger the events have been discussed. It is shown that the CMEs is believed to happen because of the magnetic filament that connected to active region (AR) 2339 was erupted, and combination of two wild filament produced a bright CMEs. Fortunately, the expanding cloud does not appear to be heading for earth.
Źródło:
World Scientific News; 2016, 37; 168-178
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of the X2-Class of flares with Presence of Type IV burst and Single Type III burst in Low Frequency (20-85 MHz) on 5th May 2015
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Zainol, N. H.
Syazwan, Nabilah Ramli
Ali, Marhana Omar
Husien, Nurulhazwani
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191466.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
solar burst
III
IV
X-ray region
solar flare
Active Region 2335
Opis:
The plasma-magnetic field interaction in the solar corona is caused exploration of suprathermal electron population have been made to study about the phenomena solar radio burst. This burst only took about approximately 2 minutes to produce X2- class of solar flares which occurred at 22:10 UT till 22:11UT. The wave-wave interaction and wave-particle interaction influenced the characteristic structures of the emission. The CALLISTO spectrometer has been used to detect and record the Type IV and Type III occurred during 22:07UT till 22:11 UT and it only took about 3.30 minutes to occur. The range of frequency of this burst 20-85 MHz and data is from ROSWELL-NM observatory. With the presence of the data, we aim to determine the causes of the Solar Radio Burst Type IV produced Type III burst in several minutes and describe briefly about the formation and dynamics of solar radio burst type IV occurred on active region, AR2335 which also produced beta-gamma magnetic field. This event showed the strong pulsation and a broadband pattern with details about Type IV burst, then Type III burst present in fast drift. AR 2335 is the most active region and produced X2-class of solar flares which has solar wind speed about 361.6km/second and proton density about 4.3 protons/cm3 in the solar corona. AR 2335 harbor energy for X2-class from 6-H to 24-H observation on X-Ray solar flares have been recorded. The data showed that it has a strong energy electrons presence during the burst occurred in the active region and this class of solar flares are more powerful which has potential to cause radio blackout and long lasting space weather storms. As the conclusion, the sun activity showed on 5th May 2015 has quasi-periodic pulsation that has continuum and drift in lower frequency. The temperature that corona took to extend from the top of a narrow transition region still be as mysterious properties.
Źródło:
World Scientific News; 2016, 40; 188-198
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies