Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "N." wg kryterium: Autor


Tytuł:
Solar Burst Type IV Signature Associated with Solar Prominences on 20th January 2016
Autorzy:
Hamidi, Z. S.
Hamzah, N.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1178518.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
Proceeding from close association between solar eruptions, flare and CMEs, we analyze between burst at 980 MHz to 1270 MHz, recorded at the Blein, Switzerland on 20th January 2016. This burst indicates the emission radiation from the Sun from numerous high energy electrons in active region AR2484 and AR2487 forming a large prominence in that particular area. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During that time the Sun has the moderate number of sunspots with 55.The radio sources responsibly for IV appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band and fine structure. It can be considered as an intermediate fast drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. This burst appears is single SRBT III for approximately within 7 minutes with starting time is 8.23 UT. This burst duration is longer compared to the other events. It can be considered as a IV because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with the increase of this path because of losses owing to a leaving of particles the acceleration volume due to drift.
Źródło:
World Scientific News; 2017, 70, 2; 111-121
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of Long Series of Quasi-Periodic Pulsation in Active Region AR 2297
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1194014.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
IV
Sun
X-ray region
active region AR2222
radio region
solar burst
solar flare
Opis:
This phenomena allow us to explore about suprathermal electron population that produced by plasma-magnetic field interactions in the solar corona about tens of minutes.The characteristics of the structures of the emission is influenced by wave-particle interaction and wave-wave interaction. The Callisto spectrometer recorded broadband of solar radio burst Type IV from 250-900 MHz. Using data from BLEN7M observatory, we aim to provide inclusive description about the formation and dynamics of solar radio burst type IV due to active region AR2297. About five minutes, the events revealed strong pulsations and “broad patterns” with details of solar radio burst type III with presence of CMEs. AR2297 is the most active region which produced X2-Class solar flares. The speeds of solar wind exceeds 376.0 km/second with 4.0 g/cm3 density of proton in the solar corona. The radio flux shows 121 SFU. Furthermore, there are two active regions, AR2298 and AR2299 also presents in the X2-class solar flares. Active region AR2297 have unstabe ‘Beta-Gamma-Delta’ magnetic fields thet habor energy for M class to X2- class eruptions. As a conclusion, we conclude that Sun activities are more active to achieve maximum cycle at the end 2015. Solar flares on 11th of March 2015 showed long series of quasi-periodic pulsation that deeply modulate a continuum and its drifting toward lower frequency. The corona extends from the top of a narrow transition region to Earth and has a temperature millions of degrees that still mysterious properties.
Źródło:
World Scientific News; 2015, 9; 59-69
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on a Broken Solar Burst Type II during High Activities in AR1613 on 13th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411666.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 8-15
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Observation of the Radio Frequency Interference (RFI) at the National Space Centre, Malaysia
Autorzy:
Hamidi, Z.S.
Shariff, N.N.M.
Monstein, C.
Wan Zulkifli, W.N.A.
Ibrahim, M.B.
Arifin, N.S.
Amran, N.A.
Powiązania:
https://bibliotekanauki.pl/articles/11076.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
observation
Radio Frequency Interference
National Space Centre
Sun
astronomy
solar monitoring
e-CALLISTO system
Malaysia
Opis:
Important results of the Radio Frequencies Interference (RFI) at the National Space Centre, Sg Lang Selangor, Malaysia has been reported. In order to make sure that the data of solar monitoring in radio region is reliable, we need to study the variation of interference and the possible sources that contribute to this interference. This data has been taken from 1-2000 MHz at the main site of installation e-CALLISTO system. The study is one of a main part of an initiative of e-CALLISTO networking research in order to identify the main RFI sources and to monitor continuously the behavior of the RFI at the site. Our main objective is to qualify the potential of monitoring a continuous radio emission of the Sun. This work is also an initiative of the International Space Weather Initiative (ISWI) project where Malaysia is one of the countries that joined the e-CALLISTO network. Due to our results this site showed the positive impact for the solar monitoring purpose. It is hoped that the survey will continue from time to time in a consistent mode so that any polluted signal for radio astronomy purpose can be protected. Overall, we can still get a good solar burst data, especially at 40-400 MHz. Perhaps, we can contribute the good data for solar burst monitoring towards the maximum cycle beginning the end of this year 2013.
Źródło:
International Letters of Natural Sciences; 2014, 05
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relativistic Energy Associated with a Moving Fiber Burst Type μIV Associated with The Class A Solar Prominence
Autorzy:
Hamidi, Z. S.
Norsham, N. A. M.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1194133.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
Sun
X-ray region
solar burst
solar flare
type IV radio region
Opis:
The relativistic energy electron emission is found to occur only during proton events. Solar prominences usually occur in loop shape and can last for weeks or months. This event allows us to investigate the electron density and drift rate of solar burst type IV During 21st September 2015. During that time the Sun has the highest number of sunspots. The radio sources responsibly for Ivm appear to expand spherically through the solar corona after eject on y solar flare. This event shows a strong radiation in radio region, but not in X-ray region. This burst intense radio phenomena that follow with solar flares. It has a wide band structure from 1412-1428 MHz. It can be considered as an intermediate f drift burst (IMDs). This fiber burst has a negative drift rate where the drift is interpreted by the group velocity of the whistler-mode waves. Their bandwidth is approximately 2% of the emission frequency. The are accompanied a parallel-drift absorption band in the background continuum radiation. The occurrence of the event is interesting in many aspects which is also in ZSIS site. From the dynamic spectra of the CALLISTO, it can be observed that there a moving type IV burst. This burst appears is single SRBT III for approximately 16 minutes at 708UT till 716UT. This burst duration is longer compared to the other events. It can be considered as a Ivμ because it begins at the same time as the explosive phase of solar flare. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. At the same time, the number of particles traveled a given path in reconnecting area falls exponentially with increase of this path because of losses owing to a leaving of particles the acceleration volume due to drifts.
Źródło:
World Scientific News; 2016, 57; 11-20
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coronal Electron Density Distribution Estimated from Meter Type II Radio Bursts and Coronal Mass Ejections
Autorzy:
Yusof, N. S.
Hamidi, Z. S.
Norsham, N. A.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192681.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
coronal mass ejection
Type II radio burst
electron density distribution
e-CALLISTO
Opis:
In this paper, we investigate the characteristic coronal mass ejection and Type II radio burst, we calculated the drift rate of Type II Radio burst and determined the electron density distribution from a Coronal Mass Ejections. The data were taken from website e-CALLISTO, Space Weather, SolarHam and also from the Langkawi National Observatory, National Space Agency, Langkawi Kedah, Malaysia. All the data collected on 15th March 2015, 4th November 2015 and 16th December 2015. On 16 March 2015, the events were associated with slower C9 solar flare and CME. For this week, the events were causing radio blackouts on Earth. On 4 November 2015, the events were associated with M1.9 solar flare, CME and Solar burst Type II. The value of the solar wind was 570.4 km/Sec and value for radio sun was 124 sfu. For drift rate, we calculated the value for sites in Sri Lanka (ACCIMT-SRI), Ooty, India (OOTY), Indonesia (INDONESIA) and Kasi, South Korea (KASI) at between 0324 to 0328 UTC. In South Korea was highest drift rate, which is 1.397 MHz/s. Also, at HB9SCT, Switzerland (HB9SCT), Humain, Belgium (Humain), Daro, Germany (Daro-VHF) and TCD in Birr, Ireland (BIR), we calculated the drift rate of solar burst Type II between 1200 until 1203 UTC. In Belgium had the highest value of the drift rate to compare at other sites. Harmonic pattern was also appeared for all these sites. On 16th December 2015, this event associated with C6.6 solar flare and CME. These events give an impact on the earth geomagnetic field which is formed of aurora because of the combination of both events that trigger geomagnetic storming.
Źródło:
World Scientific News; 2016, 46; 19-35
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An X-ray Observations of A Gradual Coronal Mass Ejections (CMEs) on 15th April 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Wan Zulkifli, W. N. A.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411850.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun Coronal Mass Ejections (CMEs)
solar corona
solar flare
solar cycle
Opis:
In the present work, we will highlight the solar observation during 15th April 2012, solar filament eruption which is accompanied by an intense and gradual Coronal Mass Ejections (CMEs) The explosion of CMEs was observed at 2:12:06 UT and also can be observed by the Solar Dynamics Observatory (SDO) with an Active Region AR1458 is crackling with C-class solar flares. The solar flare class B3 and C2 were observed beginning 2241 UT and 0142 UT. The event is considered as second largest CMEs been detected since five years. Although the solar activity within a few days is considered quite low and there are no proton events were observed at geosynchronous orbit., the is still an unexpected explosion of CMEs can be occurred. The radio flux number (10.7 cm) exceeds 102 with the number of sunspot and area of sunspot increased to 77 and 270. The velocity of CMEs was calculated based on the LASCO2 data. From the results, it is clearly seen that the range of the velocity is between 200 kms-1 to 2000 kms-1. This wide of range proved that the mechanism of the CMEs is a gradual process. The explosion of CMEs velocity is located from 80º - 255º from North of the Sun. We can then conclude that currently, the rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CMEs loop and an active region play an important character in this event.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 8; 13-19
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
First Light Detection of A Single Solar Radio Burst Type III Due To Solar Flare Event
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411677.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar flare
low frequency
radio wavelength
solar burst
type III
CALLISTO
Opis:
The eruption mechanism of solar flares and type III are currently an extremely active area of research, especially during the solar cycle is towards maximum. In this case, the total energy of solar burst type III is of the order of solar flare with the explosion of the energy can up to 1015 ergs. The solar flare event is one of the most spectacular explosions that still be on-going study in the solar physics world. This event occurred at 2:000 UT on 15th April 2012 is due to the explosion of the magnetic energy in from the chromosphere and converted into the heating, mass motion and particle acceleration which can be detected by solar radio burst type III. In this work, we will highlight our first light detection of very tiny solar radio burst type III, which has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system at 5:53:23. The region of the data is from 150 − 400 MHz in radio region. This burst is drifted from 150 MHz till 260 MHz. It represents a total energy of 6.2035 × 10-7 eV − 1.0753 × 10-6 eV. This fast drift burst is a continuity of the acceleration of the particles which is intermittent, and can be observed since the explosion of the solar flare. Although the burst is very tiny, it is still significant because this burst is the first detection of a single type III burst from our site. Still, the acceleration of the particles can be detected from Earth in the radio region within 3 hours period of observation at the post stage of solar flare.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 1; 51-58
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Scenario of Solar Radio Burst Type III During Solar Eclipse on 14th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411752.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
A compact solar flare was observed during a total solar eclipse event on 13-14 November 2012. This phenomenon is beginning in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. During the eclipse, the highest magnitude was 1.0500, occurring only 12 hours before perigee, with the maximum eclipse totality lasting just over four minutes. Considering the observational facts, the solar radio burst type III can be detected from the National Space Centre Malaysia by the Compound Low Cost Low Frequency Transportable Observatory (CALLISTO) system from 00:00 UT –1:30 UT. The group and individual solar burst type III can be detected in the region of 150-400 MHz. However, the eclipse cannot be observed from our site. From the observation, it was found that the eruption in the active region is becoming more active with a tens of groups solar radio burst type III can be observed. It continuing bursting within the first one hour. The sunspot number exceeds to 108 and solar wind speed 454.9 km/sec. Still the Sun remains active and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 135-143
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Different Between the Temperature of the Solar Burst at the Feed Point of the Log Periodic Dipole Antenna (LPDA) and the CALLISTO Spectrometer
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411932.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
Log Periodic Dipole Antenna
LPDA
temperature
solar radio burst
Opis:
The article attempts to analyze and compare the temperature of solar radio burst at the (i) feed point and antenna and (ii) at the receiver (CALLISTO spectrometer). The analysis is very important to evaluate the performance for a better observation of solar radio burst. We start our project by developing this antenna with 19 elements of different sizes covers from 45 − 870 MHz. We choose the National Space Agency (PAN), Sg. Lang, Banting, Selangor, Malaysia as our site seems this site has a very minimum of Radio Frequency Interference (RFI). The antenna, then connects to the low noise amplifier and the CALLISTO spectrometer as one complete system. Based on the results, it was found that the temperature of the at the feed point of the antenna and receiver is different up to 3.25 K. The average level burst level above background sky is about 0.41dB. It was found that the power of solar burst at the feed point of the antenna is equivalent to 2.6 x 10-18 W, but decreases to 2.3 x 10-18 W when detected by the CALLISTO spectrometer. These results show a better understanding of how does the system operate in terms of the process of analysis of the temperature of solar radio burst.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 2; 167-176
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Occurrences Rate of Type II and III Solar Radio Bursts at Low Frequency Radio Region 45 − 870 MHz
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412187.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type II
type III
solar flare
Coronal Mass Ejections
CMEs
Opis:
Observations of type II and III solar bursts indicate that while type III bursts may appear at any altitude, from the very low corona into interplanetary space, type II solar bursts do not act the same way. This work focuses on recent observations in the radio region on the low frequency region from 45 MHz to 870 MHz. Our analysis employed the accuracy of the daily solar burst measurements of e-CALLISTO network. It was found that solar burst type II explode quite minimum with 1-2 events from 2006 - 2010. However, the data 2011 for solar burst type II increases drastically with 16 events has been recorded. The occurrences of Coronal Mass Ejections (CMEs) events are also increasing up to four times in 2011. Most of the both events can be observed in the range of 150 MHz till 500 MHz. Overall, we can say that the range of photon energy for solar burst type III is between 7.737 x 10-7 eV to 1.569 x 10-6 eV. In the case of solar burst type II, the distribution of energy is much smaller with 1.596 x 10-6 eV to 6.906 x 10-6 eV. Detailed investigation of solar burst will concern the 2011 data seem to show a significant trend for both types. We showed that the increasing of both solar burst events via years implies directing an increasing of solar activities including sunspot number, solar flare and Coronal Mass Ejections (CMEs) events. It is expected that both types will increase gradually in the beginning of 2014.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 18; 103-112
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Observation of an Inverted Type U Solar Burst Due to AR1429 Active Region
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412209.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
low frequency
solar burst
type U
Radio Frequency Interference (RFI)
Opis:
A detailed investigation of an inverted type U solar burst in meter region and their associated the solar flare and Coronal Mass Ejections (CMEs) has been reported. Solar type U burst has been observed at the National Space Centre, Banting, Selangor detected by the Compound Low Cost Low Frequency Transportable Observatories (CALLISTO) system in the 150 MHz till 400 MHz at the low frequency band. An inverted U type is occurring on 9th March 2012 between 4:00 UT to 4:15 UT within 1 minute (4:12 − 4:13) UT. From the dynamic spectra of CALLISTO, we have identified metric type U burst with maximum emission near the frequency 385MHz. In specific, the continuum type III burst will soon structure this burst due to our observations. Other types such as type II and IV are only appearing only after type U burst is ejected and appear at the same point of the solar flare event. Since the U burst activity coincides with the peak of the hard X-ray flare at 4:12UT in AR1429, we classified that the event is associated with the injection of the high energetic particles. In conclusion, it is confirmed that an inverted type U burst is initiated after a complex and a group solar radio burst type III.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 10; 81-90
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Selected Solar Radio Bursts Based on Solar Activity Detected by e- CALLISTO (Malaysia)
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412630.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
type IV
type V
type U
e-CALLISTO
Opis:
One of the main reasons to study more about the dynamics of solar radio bursts is because solar these bursts can interfere with the Global Positioning System (GPS) and communications systems. More importantly, these bursts are a key to understand the space weather condition. Recent work on the interpretation of the low frequency region of a main solar burst is discussed. Continuum radio bursts are often related to the solar activities such as an indication of the formation of sunspot, impulsive phase of solar flares and Coronal Mass Ejections (CMEs) and their frequencies correspond to the densities supposed to exist in the primary energy release volume. Specifically, solar burst in low frequency play an important role in interpretation of Sun activities. In this work, we have selected few solar bursts that successfully detected by our station at the National Space Centre, Banting Selangor. Our objective is to correlate the solar burst with Sun activities by looking at the main sources that responsibility with the trigger of solar burst. It is found that type II burst is dominant with Coronal Mass Ejections (CMEs), type III burst associated with solar flare, IV burst with the formation of active region and type U burst high solar flare. We believed that this work is a good start to monitor Sun’s activities in Malaysia as equatorial country.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 144-159
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of Spectral Overview and Radio Frequency Interference (RFI) Sources at Four Different Sites in CALLISTO Network at the Narrow Band Solar Monitoring Region
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412644.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
CALLISTO
Radio Frequency Interference (RFI)
RFI sources
solar radio burst
Opis:
Continuous observation of solar radio burst in CALLISTO network was started since 2002 with Blein Switzerland is the first site that launched the system. Since then, there are more than 35 sites around the world that monitor the Sun activity within 24 hours until 2014. However, there is an issue of Radio Frequency Interference (RFI) that need to be considered. This noise is a major obstacle when performing observation with CALLISTO system. We selected 4 sites as preliminary analysis to analyze in detailed at a specific frequency which is very important in solar burst monitoring. The selected sites are (i) Blein, Switzerland (ii) Mauritius (iii) KASI Korea and (iv) ANGKASA, Malaysia. The regime narrow band that we focused are from (i) 72 – 75 MHz (ii) band 145 – 153 MHz (iii) 240 – 250 MHz (iv) 320 – 330 MHz (v) 406 – 410 MHz. The results of the sources of the RFI also will be highlighted. This work is was part of a larger study which focuses on a specific region that can be used for detailed investigation of solar burst. This issue of Radio Frequency Interference (RFI) needs a dialogue and interactions between different actors and networks.It is hoped that the analysis will help the solar physicist to choose a better data.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 2; 135-145
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Understanding climate changes in Malaysia through space weather study
Autorzy:
Hamidi, Z.S.
Shariff, N.N.M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/11399.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
climate change
Malaysia
weather
Sun
solar activity
Earth
interaction
Opis:
Space weather has a close connection with the interaction of the Earth and the Sun. As equatorial country, the characteristic features of the climate of Malaysia are uniform temperature, very high humidity and copious rainfall. Malaysia has an average of temperature of 26.7 °C per year. Therefore, it is suitable to monitor the Sun. In the following work, we will emphasize the development of Sun monitoring in Malaysia. The number of observatories are increasing. A dedicated work to understand the Sun activity in radio region is a part of an initiative of the United Nations together with NASA in order to support developing countries participating in „Western Science‟ research. Realizing how important for us to monitor the space weather, therefore, we have been utilizing the new radio spectrometer, CALLISTO (Compound Low Cost Low Frequency Transportable Observatories) spectrometer. Malaysia is one of the earliest country from South- East Asia (ASEAN) that involve this research. One of the advantages to start the solar monitoring in Malaysia is because our strategic location as equator country that makes possible to observing a Sun for 12 hours daily throughout a year. We strongly believe that Malaysia as one of contributor of solar activity data through E-CALLISTO network. This is a very good start for developing a space weather in Malaysia. With the implementation of CALLISTO systems and development of solar monitoring network, a new wavelength regime is becoming available for solar radio astronomy. Overall, this article presents an overview of space weather in Malaysia. With the present level of the international collaboration, it is believed that the potential involvement of local and international scientist in space weather will increase.
Źródło:
International Letters of Natural Sciences; 2014, 08, 1
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies