Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "S. M" wg kryterium: Wszystkie pola


Tytuł:
Solar Radio Burst Type III due to M 2.9 Class Flare with a Geomagnetic Disturbance
Autorzy:
Hamidi, Z. S.
Ali, M. O.
Shariff, N. N. M.
Monstein, C.
Zainol, N. H.
Hussien, Nurul Hazwani
Ramli, Nabilah
Farid, M. S.
Powiązania:
https://bibliotekanauki.pl/articles/1190207.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar radio burst
solar storm
flare
geomagnetic disturbance
Opis:
Varying forms of solar radio burst were classified by their frequent changes in time, which are known as drift rate. There are 5 types of radio emission were named type I, II, III, IV and V. This paper is highlighted on the type III event which occurred on 27th August 2015. In the IP medium, type III solar radio burst can be classified in three different groups which representing three different situations of electron beam production and propagation which are isolated, complex and storm type III burst. The most powerful manifestation of solar activity is solar flare together with coronal mass ejections, eruptive prominences and the solar wind are the solar events which affect the earth's atmosphere and can cause geomagnetic disturbance. In this study, the effect of M class flare with solar radio burst type III was investigated. During the day, the solar wind proton density seems to be high which is 8.4 protons/cm3 and accompanied by normal solar wind speed of 348.7 km/Sec. Spaceweather.com reported that there is one sunspot was detected (AR2403) and M class of the flare was detected during the day at 0544 UT. The data geomagnetic signal shows that during the day only geomagnetic disturbance that occur no such geomagnetic storm since the sunspot not facing the earth directly.
Źródło:
World Scientific News; 2016, 44; 155-167
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Active Regions 11036 Characteristics Leads To Solar Flare Class C7.2 Phenomena
Autorzy:
Zainol, N. H.
Hamidi, Z. S.
Husien, Nurulhazwani
Ali, M. O.
Sabri, S. N. U.
Shariff, N. N. M.
Faid, M. S.
Monstein, C.
Ramli, Nabilah
Powiązania:
https://bibliotekanauki.pl/articles/1192106.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar Radio Burst Type II
solar flare
Callisto network
active region
Opis:
The solar flares are generated from electromagnetic radiation which is sudden oscillation of the stored energy in the magnetic field of the sun. Flares are categorized according to their brightness as C, M and X, where X is the brightest. The X class flares caused a long-time solar storm and ionospheric radio waves sparkling. The moderate level M class flares mostly effect polar cups and cause short-time radio sparkling. However, the C class flares are weaker than the X and M flares. In this work, we present an active region from the disturbance of magnetic field on the area of the Sun and may lead to powerful event if the magnetic field become stronger. The CALLISTO system network that has been installed in Gauri, India observed data that contain Solar Radio Burst Type II (SRBT II) occurred on 22nd December 2009 at 04:57 UT to 05:02 UT. Five active regions were obtained from online data via internet from the Space Weather website and the Solar Monitor website. All data and information from these sources assist in analyze of the phenomena. The magnetic field and X-ray flux, proton density increase the possibilities that SRBT II observed by CALLISTO network to generate powerful solar flare. When X-ray flux level was at maximum, then solar flare was at peak point. However, solar activity level was low because among of five active regions present, only one C-class flare event occurred. The most active region that contributes this event is an AR11036 with C-class flare.
Źródło:
World Scientific News; 2016, 45, 2; 80-91
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Solar Radio Burst Type II Correlated With Minor CME Contributes to The Production of Geomagnetic Disturbance
Autorzy:
Husien, Nurulhazwani
Hamidi, Z. S.
Ali, M. O.
Zainol, N. H.
Sabri, S. N. U.
Shariff, N. N. M.
Faid, M. S.
Ramli, Nabilah
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192691.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar radio burst
solar radio burst type II
Coronal Mass Ejections
geomagnetic disturbance
Opis:
The solar radio burst type II on 4th November 2015 was associated with minor CME that not lead towards the Earth. This clear type II burst recorded on spectrographs detected by the antenna in several locations (Gauri, Almaty, Kasi and Ooty) were obtained from CALLISTO website. The average time of the burst occurred are around 03:24 UT until 03:28 UT with the clear minor CME emerged recorded by SOHO at 03:12 UT. Although it just a minor CME but it is still giving the effect on Earth as it contributes to geomagnetic disturbance on the Earth during that day. The affected region reported by The Local news is Sweden, where the radar system for aviation was not clear, but it is back to normal after a few hours later. This geomagnetic disturbance is powerful enough that may cause the satellite damage, endanger astronauts and produce destructive surges on power grids.
Źródło:
World Scientific News; 2016, 46; 165-175
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geo-effective Disturbances from the “Beta-Gamma-Delta” Magnetic Fields on Active Region AR 2403
Autorzy:
Sabri, S. N. U.
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zainol, N. H.
Ali, M. Omar
Hussien, Nurul Hazwani
Powiązania:
https://bibliotekanauki.pl/articles/1192069.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Solar Radio Burst Type IV
X-ray region
Solar flare
active region AR 2403
Opis:
This moving solar radio burst type IV, which lies in between 980 – 1260 MHZ was observed using Compound Astronomical Low-Cost Low- Frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometer and will discussed in detail. CALLISTO system was used and the data were recorded. From BLEN5M’s Radio Flux Density data, it shown that a brief description of the formation of a dynamic formation of solar radio burst type IV due to an active region, AR 2403. This event proved that solar radio burst type IV has a broadband continuum features and has strong pulsations in some range of time. In this event it was took about 8 minutes and it can be high in possibility solar flare and CMEs event followed due to this event. AR 2403 remained active and produced an X- class solar flares and it showed “Beta- Gamma-Delta” magnetic field that gives solar flares which can make geo-effective disturbance to our earth satellite and we have to investigate how plasma – magnetic field in the solar corona which can produce suprathermal electron pulsation about 8 minutes. In this event, it has solar wind speed in 364.8 km/sec and solar wind density in 11.0 protons/cm3.
Źródło:
World Scientific News; 2016, 37; 1-11
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The zigzag pattern construction of Log Periodic Dipole Antenna Based on Rumsey’s Principle
Autorzy:
Hamidi, Z. S.
Saad, M. Azren Mat
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1188094.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Log Periodic Dipole Antenna
zigzag pattern
solar burst
radio region
Rumsey’s principle
Opis:
The log-periodic dipole array (LPDA) consist of an array of dipoles in which there have a different lengths and spacing. The wire may be straight or it may be strung back and forth between trees or walls just to get enough wire into the air; this type of antenna sometimes is called a zigzag antenna. Rumsey’s principle requires that the locations of all elements be specified by angles rather than distances, because of this the log periodic dipole array must be correspondingly longer to get very wide bandwidths and gives a very high data rate transmission. The significance of this study is to understand how do the LPDA can be used to monitor solar activities of the sun using the LPDA antenna. The characteristics that need to be considered during construct this antenna is the radiation pattern, polarization, operation of the frequency band, gain and efficiency of an antenna which indicates the power or field strength radiated in any direction relative to that in the direction of maximum radiation. The arrangement of elements in increasing order from the top of the antenna until the bottom part of antenna. Our designed antenna was constructed using aluminum for the further investigation, we can use a copper and check the difference between two of this element. For this study, we just analyzed the source of RFI using this antenna and for the further analysis, we can use this antenna to monitor the solar burst.
Źródło:
World Scientific News; 2016, 56; 146-157
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heart-shape Active Region 2529 Producing Strong M6.7 class Solar Flare and Gradual Coronal Mass Ejections
Autorzy:
Hamidi, Z. S.
Omar Ali, M.
Nurul, Hazwani Husien
Sabri, S. N. U.
Zainol, N. H.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1179601.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Gradual Coronal Mass Ejections
Heart-shape active region
Sun
X-ray region
solar flare
Opis:
The Centre of the Sun is very important to be study because this layer is where the nuclear reaction will be occurred. During large event pre-flare usually continues a few minutes and followed by impulsive phase about 3 to 10 minutes. Solar storms such as solar flare and Coronal Mass Ejections are frequently occurred on the area of the Sun that have strong magnetic field or known as active region The release of the stored free magnetic energy that probably drives a CME can take many forms including (predominantly) mechanical in the form of an expanding CME and erupting filament, electromagnetic emission in the form of a flare, and also in the acceleration of energetic particles, magnetic field reconfiguration and bulk plasma motion. In this study, the data of active region of the Sun was taken from official website of the Langkawi National Observatory. The image of the active region was observed by using 11-inch Celestron telescope with solar filter. This data confirms that there was a strong M class of solar flare during the day due to eruption of AR 2529 was occurred on 18th of April. From the x-ray flux data also, it can be observed that few days before M6.7 class solar flare occurred, there were several C classes of flare. The evolution of small AR 2529 to a big heart-shape forms an eruption that producing strong M6.7 class of flare and three gradual CMEs. This strong flare caused significant impact around the high technologies of Pacific Ocean by fading the signal at frequencies below 15 MHz.
Źródło:
World Scientific News; 2017, 74; 181-193
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coronal Electron Density Distribution Estimated from Meter Type II Radio Bursts and Coronal Mass Ejections
Autorzy:
Yusof, N. S.
Hamidi, Z. S.
Norsham, N. A.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1192681.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
coronal mass ejection
Type II radio burst
electron density distribution
e-CALLISTO
Opis:
In this paper, we investigate the characteristic coronal mass ejection and Type II radio burst, we calculated the drift rate of Type II Radio burst and determined the electron density distribution from a Coronal Mass Ejections. The data were taken from website e-CALLISTO, Space Weather, SolarHam and also from the Langkawi National Observatory, National Space Agency, Langkawi Kedah, Malaysia. All the data collected on 15th March 2015, 4th November 2015 and 16th December 2015. On 16 March 2015, the events were associated with slower C9 solar flare and CME. For this week, the events were causing radio blackouts on Earth. On 4 November 2015, the events were associated with M1.9 solar flare, CME and Solar burst Type II. The value of the solar wind was 570.4 km/Sec and value for radio sun was 124 sfu. For drift rate, we calculated the value for sites in Sri Lanka (ACCIMT-SRI), Ooty, India (OOTY), Indonesia (INDONESIA) and Kasi, South Korea (KASI) at between 0324 to 0328 UTC. In South Korea was highest drift rate, which is 1.397 MHz/s. Also, at HB9SCT, Switzerland (HB9SCT), Humain, Belgium (Humain), Daro, Germany (Daro-VHF) and TCD in Birr, Ireland (BIR), we calculated the drift rate of solar burst Type II between 1200 until 1203 UTC. In Belgium had the highest value of the drift rate to compare at other sites. Harmonic pattern was also appeared for all these sites. On 16th December 2015, this event associated with C6.6 solar flare and CME. These events give an impact on the earth geomagnetic field which is formed of aurora because of the combination of both events that trigger geomagnetic storming.
Źródło:
World Scientific News; 2016, 46; 19-35
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Current Situation of Radio Frequency Interference (RFI) Profile at Outdoor and Indoor Sites of Faculty of Applied Sciences, UITM, Malaysia
Autorzy:
Hamidi, Z. S.
Nizamudin, Nur Izzani
Shariff, N. N. M.
Syazwan, M.
Husien, Nurulhazwani
Ali, M. O.
Zainol, N. H.
Ramli, Nabilah
Sabri, S. N. U.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191429.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Radio Frequency Interference (RFI)
radio astronomy
RFI sources
Opis:
This Radio Frequency Interference (RFI) study is currently one of a main sub-research in radio astronomy in Malaysia. The main objective of this monitoring is to test and qualify the potential of radio astronomical sources that can be observed in Malaysia generally. Analysis process focuses at indoor and outdoor of Faculty of Applied Sciences, UITM Shah ALAM, Malaysia (latitude: 03°06.534’N, longitude: 101°50.396’E). There are three mobile network communications that operate at the upper band frequency of 1800MHz, which are Maxis (1805-1830 MHz), Celcom (1830-1855 MHz) and Digi (1855-1880 MHz) for GSM/LTE network. We observed that both sites having the highest and second highest peak at the same frequency of 420 MHz and 1835 MHz with the same source, which were due to mobile application followed by the lowest peak due to radio navigation satellite. We verified that the source of RFI of 1835 MHz at the Faculty of Applied Sciences may come from Celcom mobile telecommunication network signal because there is transmitter on top of two Celcom towers. This observation must be continuously done to ensure that RFI level does not increase drastically and to ensure that allocation spectrum band that was reserved for radio astronomy activities was always protected.
Źródło:
World Scientific News; 2016, 40; 23-33
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Correlation between Solar Flare Phenomena in an X-ray Region and Radio Flux Measurement from January to September 2010
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Ali, M. F.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411743.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
chromospheres
flares
radio flux
solar activity
Opis:
A short term variation of solar flare in nine months (January 2010 to September 2010) is presented. This paper review and analyze the correlation between radio flux strength measurement and solar flare in the X-ray region. The radio flux measurement data were taken from the National Research Council; Ottawa while hard X-ray emission observed by Royal Observatory of Belgium. The overall range of solar radio flux recorded in this study ranging from 68 x 10-22 Wm-2Hz-1 to 96 x 10-22 Wm-2Hz-1. As there was no class of an X of solar flare reported at all in this study, we can confirm that there are no major effects that happened on Earth and outer space such as Coronal Mass Ejections (CMEs) and solar storms. We concluded that the Sun shows a very minimum activity towards 24th solar cycle.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 84-92
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Observation of the Radio Frequency Interference (RFI) at the National Space Centre, Malaysia
Autorzy:
Hamidi, Z.S.
Shariff, N.N.M.
Monstein, C.
Wan Zulkifli, W.N.A.
Ibrahim, M.B.
Arifin, N.S.
Amran, N.A.
Powiązania:
https://bibliotekanauki.pl/articles/11076.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
observation
Radio Frequency Interference
National Space Centre
Sun
astronomy
solar monitoring
e-CALLISTO system
Malaysia
Opis:
Important results of the Radio Frequencies Interference (RFI) at the National Space Centre, Sg Lang Selangor, Malaysia has been reported. In order to make sure that the data of solar monitoring in radio region is reliable, we need to study the variation of interference and the possible sources that contribute to this interference. This data has been taken from 1-2000 MHz at the main site of installation e-CALLISTO system. The study is one of a main part of an initiative of e-CALLISTO networking research in order to identify the main RFI sources and to monitor continuously the behavior of the RFI at the site. Our main objective is to qualify the potential of monitoring a continuous radio emission of the Sun. This work is also an initiative of the International Space Weather Initiative (ISWI) project where Malaysia is one of the countries that joined the e-CALLISTO network. Due to our results this site showed the positive impact for the solar monitoring purpose. It is hoped that the survey will continue from time to time in a consistent mode so that any polluted signal for radio astronomy purpose can be protected. Overall, we can still get a good solar burst data, especially at 40-400 MHz. Perhaps, we can contribute the good data for solar burst monitoring towards the maximum cycle beginning the end of this year 2013.
Źródło:
International Letters of Natural Sciences; 2014, 05
2300-9675
Pojawia się w:
International Letters of Natural Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Development of Solar Prominence on 4th September 2015 and the Solar Burst Type III and IV
Autorzy:
Norsham, N. A.
Hamidi, Z. S.
Mazlan, Muzamir
Shariff, N. N. M.
Yusofl, N. S.
Jafni, A. I.
Khalib, N. M. F.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192156.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Solar prominences
active region (AR)
solar burst
type III
type IV
e CALLISTO
Opis:
This article will focus on the solar prominences that occur during the 4th September 2015. On that day, there were two sunspots on the surface of the sun, which were AR2409 and AR2410. These two active regions did not produce any threat for strong flare and thus the solar activity was very low. The prominences that will be focused were both occurred at 0353 UT and 0427 UT respectively. There were minor (G1) geomagnetic storm observed on that day. For solar prominences that occurred at 0353 UT, solar radio burst type (SRBT) IV was detected by CALLISTO spectrometer. From the CALLISTO, two bursts at low intensities with the duration of about 7 minutes for the first burst of 280-320 MHz and 6 minutes for the second burst of 360-430 MHz were observed. For the first burst, energy calculated was between 1.855 x 10 -25 J and 2.12 x 10 -25 J with the drift rate of 0.095 MHz/s. For second burst, the energy obtained was between 2.385 x 10 -25 J and 2.849 x 10 -25 J with the drift rate of 0.194 MHz/s. At 0427 UT, SRBT III was recorded with a frequency of 240-350 MHz with the energy which was obtained between 1.590 x 10 -25 J and 2.319 x 10 -25 J. The drift rate of this type of burst was 0.61 MHz/s. During this event, the solar wind value was 499.3 km/Sec with the proton density of 15.1 protons/cm3.
Źródło:
World Scientific News; 2016, 45, 2; 264-275
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on a Broken Solar Burst Type II during High Activities in AR1613 on 13th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411666.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 8-15
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emergence of an Impulsive CMEs Related To Solar Radio Burst Type III Due To Magnetic Filament Eruption
Autorzy:
Ali, M. Omar
Shariff, N. N. M.
Hamidi, Z. S.
Husien, Nurul Hazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1192085.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun
Coronal Mass Ejections (CMEs)
solar burst type III
magnetic filament
Opis:
During solar activity the energy particles of the sun released due to solar flare, Coronal Mass Ejections (CMEs), coronal heating as well as sunspot. Solar radio burst will be observed in the presence of solar activity such solar flare, CMEs and solar prominence as the indicator for those events to happen. During the peak of solar cycle, the filaments are present due to the active magnetic field and solar storm’s explosion. This type of solar radio burst normally can be seen in the phase of impulsive solar flare. Therefore, it is crucial to understand field line connectivity in flare and the access of flare accelerated particle to the earth. In this study, we highlighted on the observation of solar radio burst type III on 9th of May at 05:31 UT till 05:44 UT. The event was successfully recoded by e-CALLISTO using BLEINSW radio telescope. The Solar Radio Burst Type III that had been observed was related to the Coronal Mass Ejections and the mechanisms that trigger the events have been discussed. It is shown that the CMEs is believed to happen because of the magnetic filament that connected to active region (AR) 2339 was erupted, and combination of two wild filament produced a bright CMEs. Fortunately, the expanding cloud does not appear to be heading for earth.
Źródło:
World Scientific News; 2016, 37; 168-178
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An X-ray Observations of A Gradual Coronal Mass Ejections (CMEs) on 15th April 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Wan Zulkifli, W. N. A.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411850.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sun Coronal Mass Ejections (CMEs)
solar corona
solar flare
solar cycle
Opis:
In the present work, we will highlight the solar observation during 15th April 2012, solar filament eruption which is accompanied by an intense and gradual Coronal Mass Ejections (CMEs) The explosion of CMEs was observed at 2:12:06 UT and also can be observed by the Solar Dynamics Observatory (SDO) with an Active Region AR1458 is crackling with C-class solar flares. The solar flare class B3 and C2 were observed beginning 2241 UT and 0142 UT. The event is considered as second largest CMEs been detected since five years. Although the solar activity within a few days is considered quite low and there are no proton events were observed at geosynchronous orbit., the is still an unexpected explosion of CMEs can be occurred. The radio flux number (10.7 cm) exceeds 102 with the number of sunspot and area of sunspot increased to 77 and 270. The velocity of CMEs was calculated based on the LASCO2 data. From the results, it is clearly seen that the range of the velocity is between 200 kms-1 to 2000 kms-1. This wide of range proved that the mechanism of the CMEs is a gradual process. The explosion of CMEs velocity is located from 80º - 255º from North of the Sun. We can then conclude that currently, the rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CMEs loop and an active region play an important character in this event.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 8; 13-19
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Progression of Active Region with the Formation of Group and Complex Solar Radio Burst Type III on 31st August 2015
Autorzy:
Hamidi, Z. S.
Norsham, N. A.
Mazlan, Muzamir
Yusof, N. S.
Jafni, A. I.
Kahlid, N. M.
Hamdan, M. N.
Kamaruddin, Farahana
Tahar, Muhammad Redzuan
Monstein, C.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/1182942.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
solar prominences
complex solar radio burst
type iii
ar2403
e callisto
Opis:
In this event, a solar radio burst in the range of 45-165 MHz with energy of 〖2.982 x 10〗^(-26) to 〖1.093 x 10〗^(-25) Joule with 0.8 MHz/ second have been correlated with the optical solar prominence. In combination of the optical, radio and X-ray observation, the occurrence of the event has been proposed. The active region of the prominence was AR2403. An individual type III burst was observed at 19:40 UT. The burst lasts for 15 minutes with a drift rate of 0.8 MHz/s. This burst was recorded by the Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) at Almaty Site. From 29th August 2015 onwards, the total magnetic flux increases gradually to over four-fold the initial value during development and levels off around 29th August 2015. It was found that B3 solar flare, followed by a slow coronal mass ejection (CME), is released from NOAA 2403 on 31st August 2015. The region is beyond -30 longitude at the time of the flare, making it impossible to reliably measure any magnetic properties involving gradients. The overall increase of Beff prior to the flare is indicative of an increase in polarity mixing within the AR, which has been shown to be related to flaring. Understanding of the exact nature of the initiation of these events is still incomplete.
Źródło:
World Scientific News; 2016, 49, 2; 272-282
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies