Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Piekar, E." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Segmentation of images using gradient methods and polynomial approximation
Autorzy:
Piekar, E.
Momot, M.
Momot, A.
Powiązania:
https://bibliotekanauki.pl/articles/333120.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
segmentation
gradient methods
polynomial approximation
segmentacja
metody gradientowe
przybliżenie wielomianowe
Opis:
The paper presents a method for segmentation of images using region growing, with modification through the use of a correction coefficient based on the variation of intensity (brightness) in the neighborhood of the pixel of the interest. A method for the quantification of variability is based on differences in intensity, as well as the differences in intensity gradients in the surrounding pixels [10]. Evaluation of the gradients were determined by means of numerical differentiation, using the polynomial approximation [11]. The article presents the effects of application of developed methods for segmentation of images of the brain, lungs and heart.
Źródło:
Journal of Medical Informatics & Technologies; 2014, 23; 95-102
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of region growing method to brain tumor segmentation - preliminary results
Autorzy:
Piekar, E.
Szwarc, P.
Sobotnicki, A.
Momot, M.
Powiązania:
https://bibliotekanauki.pl/articles/333522.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
segmentation
region growing
T1 images
brain tumor
segmentacja
obrazy T1
guz mózgu
Opis:
In this article image have been subject to segmentation using Matlab software, i.e. T1 in normal conditions, perfusion images and images after administering a contrast agent. The tumor in images made in normal conditions was difficult to identify. The images obtained after administering the contrast agent confirmed that the homogeneity criterion has been appropriately selected. In perfusion images the pixels of the background were added to the tumor. When the parameters were changed i.e. pixel counter or neighborhood type the method became more efficient; the tumor boundaries were outlined more precisely. The region growing method enables precise tumor detection; however, the selection of an appropriate homogeneity criterion is a prerequisite for correct segmentation.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 153-160
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies